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THE MEANING OF RELATIVITY 

LECTURE I 

SPACE AND TIME IN PRE-RELATIVITY 

PHYSICS 

HE theory of relativity is intimately connected with 

-1 the theory of space and time. I shall therefore begin 

with a brief investigation of the origin of our ideas of space 

and time, although in doing so I know that I introduce a 

controversial subject. The object of all science, whether 

natural science or psychology, is to co-ordinate our experi¬ 

ences and to bring them into a logical system. How are 

our customary ideas of space and time related to the 

character of our experiences ? 

The experiences of an individual appear to us arranged 

in a series of events ; in this series the single events which 

we remember appear to be ordered according to the criterion 

of “ earlier ” and “ later,” which cannot be analysed further. 

There exists, therefore, for the individual, an I-time, or 

subjective time. This in itself is not measurable. I can, 

indeed, associate numbers with the events, in such a way 

that a greater number is associated with the later event 

than with an earlier one ; but the nature of this association 

may be quite arbitrary. This association I can define by 

means of a clock by comparing the order of events furnished 
i 
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by the clock with the order of the given series of events. 

We understand by a clock something which provides a 

series of events which can be counted, and which has other 

properties of which we shall speak later. 

By the aid of speech different individuals can, to a certain 

extent, compare their experiences. In this way it is shown 

that certain sense perceptions of different individuals 

correspond to each other, while for other sense perceptions 

no such correspondence can be established. We are ac¬ 

customed to regard as real those sense perceptions which 

are common to different individuals, and which therefore 

are, in a measure, impersonal. The natural sciences, and 

in particular, the most fundamental of them, physics, deal 

with such sense perceptions. The conception of physical 

bodies, in particular of rigid bodies, is a relatively constant 

complex of such sense perceptions. A clock is also a body, 

or a system, in the same sense, with the additional property 

that the series of events which it counts is formed of 

elements all of which can be regarded as equal. 

The only justification for our concepts and system of 

concepts is that they serve to represent the complex of 

our experiences; beyond this they have no legitimacy. I 

am convinced that the philosophers have had a harmful 

effect upon the progress of scientific thinking in removing 

certain fundamental concepts from the domain of empiric¬ 

ism, where they are under our control, to the intangible 

heights of the a priori. For even if it should appear that 

the universe of ideas cannot be deduced from experience 

by logical means, but is, in a sense, a creation of the human 

mind, without which no science is possible, nevertheless 
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this universe of ideas is just as little independent of the 

nature of our experiences as clothes are of the form of 

the human body. This is particularly true of our con¬ 

cepts of time and space, which physicists have been 

obliged by the facts to bring down from the Olympus of 

the a priori in order to adjust them and put them in a 

serviceable condition. 

We now come to our concepts and judgments of space. 

It is essential here also to pay strict attention to the 

relation of experience to our concepts. It seems to me 

that Poincare clearly recognized the truth in the account 

he gave in his book, “ La Science et l’Hypothese.” 

Among all the changes which we can perceive in a rigid 

body those are marked by their simplicity which can be 

made reversibly by an arbitrary motion of the body; 

Poincare calls these, changes in position. By means of 

simple changes in position we can bring two bodies into 

contact. The theorems of congruence, fundamental in 

geometry, have to do with the laws that govern such 

changes in position. For the concept of space the follow¬ 

ing seems essential. We can form new bodies by bringing 

bodies B, C, ... up to body A ; we say that we continue 

body A. We can continue body A in such a way that 

it comes into contact with any other body, X. The 

ensemble of all continuations of body A we can designate 

as the “space of the body A.” Then it is true that all 

bodies are in the “space of the (arbitrarily chosen) body 

AA In this sense we cannot speak of space in the 

abstract, but only of the “space belonging to a body AA 

The earth’s crust plays such a dominant role in our daily 
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life in judging the relative positions of bodies that it has 

led to an abstract conception of space which certainly 

cannot be defended. In order to free ourselves from this 

fatal error we shall speak only of “bodies of reference,” 

or “ space of reference.” It was only through the theory 

of general relativity that refinement of these concepts 

became necessary, as we shall see later. 

I shall not go into detail concerning those properties 

of the space of reference which lead to our conceiving 

points as elements of space, and space as a continuum. 

Nor shall I attempt to analyse further the properties of 

space which justify the conception of continuous series 

of points, or lines. If these concepts are assumed, together 

with their relation to the solid bodies of experience, then 

it is easy to say what we mean by the three-dimensionality 

of space; to each point three numbers, xv x2, x3 (co¬ 

ordinates), may be associated, in such a way that this 

association is uniquely reciprocal, and that xv xv and x2 

vary continuously when the point describes a continuous 

series of points (a line). 

It is assumed in pre-relativity physics that the laws of 

the orientation of ideal rigid bodies are consistent with 

Euclidean geometry. What this means may be expressed 

as follows: Two points marked on a rigid body form 

an interval. Such an interval can be oriented at rest, 

relatively to our space of reference, in a multiplicity of 

ways. If, now, the points of this space can be referred 

to co-ordinates^, xv xv in such a way that the differences 

of the co-ordinates, Axv Aq, Ar3, of the two ends of the 

interval furnish the same sum of squares, 

s2 = A*i2 + Ax22 + kx3 . . (i) 
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for every orientation of the interval, then the space of 

reference is called Euclidean, and the co-ordinates 

Cartesian.* It is sufficient, indeed, to make this assump¬ 

tion in the limit for an infinitely small interval. Involved 

in this assumption there are some which are rather less 

special, to which we must call attention on account of 

their fundamental significance. In the first place, it is 

assumed that one can move an ideal rigid body in an 

arbitrary manner. In the second place, it is assumed 

that the behaviour of ideal rigid bodies towards orienta¬ 

tion is independent of the material of the bodies and their 

changes of position, in the sense that if two intervals can 

once be brought into coincidence, they can always and 

everywhere be brought into coincidence. Both of these 

assumptions, which are of fundamental importance for 

geometry and especially for physical measurements, 

naturally arise from experience ; in the theory of general 

relativity their validity needs to be assumed only for 

bodies and spaces of reference which are infinitely small 

compared to astronomical dimensions. 

The quantity s we call the length of the interval. In 

order that this may be uniquely determined it is necessary 

to fix arbitrarily the length of a definite interval; for 

example, we can put it equal to I (unit of length). Then 

the lengths of all other intervals may be determined. If 

we make the xv linearly dependent upon a parameter X, 

xv = dv + X^„, 

* This relation must hold for an arbitrary choice of the origin and of the 
direction (ratios Axl : Ax2 : Ax3) of the interval. 
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we obtain a line which has all the properties of the straight 

lines of the Euclidean geometry. In particular, it easily 

follows that by laying off n times the interval n upon a 

straight line, an interval of length n's is obtained. A 

length, therefore, means the result of a measurement 

carried out along a straight line by means of a unit 

measuring rod. It has a significance which is as inde¬ 

pendent of the system of co-ordinates as that of a straight 

line, as will appear in the sequel. 

We come now to a train of thought which plays an 

analogous role in the theories of special and general 

relativity. We ask the question : besides the Cartesian 

co-ordinates which we have used are there other equivalent 

co-ordinates ? An interval has a physical meaning which 

is independent of the choice of co-ordinates; and so has 

the spherical surface which we obtain as the locus of the 

end points of all equal intervals that we lay off from an 

arbitrary point of our space of reference. If xv as well as 

x v {y from I to 3) are Cartesian co-ordinates of our space 

of reference, then the spherical surface will be expressed 

in our two systems of co-ordinates by the equations 

A^2 = const. . . (2) 

= const. . . . (2a) 

How must the xv be expressed in terms of thexv in order 

that equations (2) and (2a) may be equivalent to each 

other ? Regarding the x v expressed as functions of the 

xvy we can write, by Taylor’s theorem, for small values of 

the Axu, 
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AY. = J 
dx. 

Ax„ 
i. 

+ 5. 

a/3 

c)Vv 
Axai\xp . 

If we substitute (2a) in this equation and compare with 

(i), we see that the x v must be linear functions of the xv. 

If we therefore put 

x v — av + bvaxa . . . (3) 
a 

or Ar'„ = ^<Ara . • • • (3a) 

then the equivalence of equations (2) and (2a) is expressed 

in the form 

= \^Jix2 (X independent of Axv) . (2b) 

It therefore follows that X must be a constant. If we put 

X = 1, (2b) and (3a) furnish the conditions 

j3 ^aj8 • • • (4) 

in which Sai3 = 1, cr 8af} = o, according as a = /3 or 

a /3. The conditions (4) are called the conditions of ortho¬ 

gonality, and the transformations (3), (4), linear orthogonal 

transformations. If we stipulate that s'1 = ^Ax2 shall be 

equal to the square of the length in every system of 

co-ordinates, and if we always measure with the same unit 

scale, then X must be equal to 1. Therefore the linear 

orthogonal transformations are the only ones by means of 

which we can pass from one Cartesian system of co¬ 

ordinates in our space of reference to another. We see 
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that in applying such transformations the equations of 

a straight line become equations of a straight line. 

Reversing equations (3a) by multiplying both sides by bvfi 

and summing for all the vs, we obtain 

v = ^bvofoa. ~ / $ap/\Xa = l\Xp . (5) 
va a 

The same coefficients, b, also determine the inverse 

substitution of Axv. Geometrically, bva is the cosine of the 

angle between the x v axis and the ;ra axis. 

To sum up, we can say that in the Euclidean geometry 

there are (in a given space of reference) preferred systems 

of co-ordinates, the Cartesian systems, which transform 

into each other by linear orthogonal transformations. 

The distance s between two points of our space of 

reference, measured by a measuring rod, is expressed in 

such co-ordinates in a particularly simple manner. The 

whole of geometry may be founded upon this conception 

of distance. In the present treatment, geometry is 

related to actual things (rigid bodies), and its theorems 

are statements concerning the behaviour of these things, 

which may prove to be true or false. 

One is ordinarily accustomed to study geometry 

divorced from any relation between its concepts and 

experience. There are advantages in isolating that 

which is purely logical and independent of what is, in 

principle, incomplete empiricism. This is satisfactory to 

the pure mathematician. He is satisfied if he can deduce 

his theorems from axioms correctly, that is, without 

errors of logic. The question as to whether Euclidean 
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geometry is true or not does not concern him. But for 

our purpose it is necessary to associate the fundamental 

concepts of geometry with natural objects ; without such 

an association geometry is worthless for the physicist. 

The physicist is concerned with the question as to 

whether the theorems of geometry are true or not. That 

Euclidean geometry, from this point of view, affirms 

something more than the mere deductions derived 

logically from definitions may be seen from the following 

simple consideration. 

Between n points of space there are distances, 

; between these and the 3n co-ordinates we have the 

relations 

S^v“ — X\(t-))2 *1" C*-2(M) '*2(»')) + • • • 

n(n - 1) . 
From these - equations the 3^ co-ordinates 

may be eliminated, and from this elimination at least 

n(n - 1) 
-- 3n equations in the swill result.* Since 

the are measurable quantities, and by definition are 

independent of each other, these relations between the 

s^v are not necessary a priori. 

From the foregoing it is evident that the equations of 

transformation (3), (4) have a fundamental significance in 

Euclidean geometry, in that they govern the transforma¬ 

tion from one Cartesian system of co-ordinates to another. 

The Cartesian systems of co-ordinates are characterized 

n(n - 1) 
In reality there are - 3« + 6 equations. 
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by the property that in them the measurable distance 

between two points, s, is expressed by the equation 

If K(Xv) and K\Xv) are two Cartesian systems of co¬ 

ordinates, then 

^>Auy2 = ^Aa'V2. 

The right-hand side is identically equal to the left-hand 

side on account of the equations of the linear orthogonal 

transformation, and the right-hand side differs from the 

left-hand side only in that the xv are replaced by the x v. 

This is expressed by the statement that is an 

invariant with respect to linear orthogonal transforma¬ 

tions. It is evident that in the Euclidean geometry only 

such, and all such, quantities have an objective signifi¬ 

cance, independent of the particular choice of the Cartesian 

co-ordinates, as can be expressed by an invariant with 

respect to linear orthogonal transformations. This is the 

reason that the theory of invariants, which has to do with 

the laws that govern the form of invariants, is so important 

for analytical geometry. 

As a second example of a geometrical invariant, con¬ 

sider a volume. This is expressed by 

V — j j jdz1dx2dx3. 

By means of Jacobi’s theorem we may write 

dx\dx\dx3 ill ap'i, x'.2, x3) 

x.2, x3) 
dxYdx2dx3 
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where the integrand in the last integral is the functional 

determinant of the x v with respect to the xv, and this by 

(3) is equal to the determinant | b^v | of the coefficients 

of substitution, bV0L. If we form the determinant of the 

S,Aa from equation (4), we obtain, by means of the theorem 

of multiplication of determinants, 

v 

If we limit ourselves to those transformations which have 

the determinant + I,* and only these arise from con¬ 

tinuous variations of the systems of co-ordinates, then V 

is an invariant. 

Invariants, however, are not the only forms by means 

of which we can give expression to the independence of 

the particular choice of the Cartesian co-ordinates. Vectors 

and tensors are other forms of expression. Let us express 

the fact that the point with the current co-ordinates xv lies 

upon a straight line. We have 

xv - Av = \BV (v from 1 to 3). 

Without limiting the generality we can put 

]>A.2 = 1. 

If we multiply the equations by b^v (compare (3a) and 

(5)) and sum for all the p’s, we get 

x p — A p = \B p 

* There are thus two kinds of Cartesian systems which are designated 

as “right-handed” and “left-handed” systems. The difference between 

these is familiar to every physicist and engineer. It is interesting to note 

that these two kinds of systems cannot be defined geometrically, but only 

the contrast between them. 
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where we have written 

^0 = y bpvBv; Ap = '^bpvAv. 
V V 

These are the equations of straight lines with respect 

to a second Cartesian system of co-ordinates K'. They 

have the same form as the equations with respect to the 

original system of co-ordinates. It is therefore evident 

that straight lines have a significance which is independent 

of the system of co-ordinates. Formally, this depends 

upon the fact that the quantities (xv - Av) - \BV are 

transformed as the components of an interval, The 

ensemble of three quantities, defined for every system of 

Cartesian co-ordinates, and which transform as the com¬ 

ponents of an interval, is called a vector. If the three 

components of a vector vanish for one system of Cartesian 

co-ordinates, they vanish for all systems, because the equa¬ 

tions of transformation are homogeneous. We can thus 

get the meaning of the concept of a vector without referring 

to a geometrical representation. This behaviour of the 

equations of a straight line can be expressed by saying 

that the equation of a straight line is co-variant with respect 

to linear orthogonal transformations. 

We shall now show briefly that there are geometrical 

entities which lead to the concept of tensors. Let P0 be 

the centre of a surface of the second degree, P any point 

on the surface, and the projections of the interval P0P 

upon the co-ordinate axes. Then the equation of the 

surface is 
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In this, and in analogous cases, we shall omit the sign of 
summation, and understand that the summation is to be 
carried out for those indices that appear twice. We thus 
write the equation of the surface 

The quantities a^v determine the surface completely, for 
a given position of the centre, with respect to the chosen 
system of Cartesian co-ordinates. From the known law 
of transformation for the (3a) for linear orthogonal 
transformations, we easily find the law of transformation 
for the a^v * : 

^ err ' 

This transformation is homogeneous and of the first degree 
in the a^v. On account of this transformation, the a^v 

are called components of a tensor of the second rank (the 
latter on account of the double index). If all the com¬ 
ponents, of a tensor with respect to any system of 
Cartesian co-ordinates vanish, they vanish with respect to 
every other Cartesian system. The form and the position 
of the surface of the second degree is described by this 
tensor (a). 

Analytic tensors of higher rank (number of indices) 
may be defined. It is possible and advantageous to 
regard vectors as tensors of rank 1, and invariants (scalars) 
as tensors of rank o. In this respect, the problem of the 
theory of invariants may be so formulated : according to 
what laws may new tensors be formed from given tensors ? 

* The equation aVrlV^'r = 1 may, by (5), be replaced by &’ errb fxa-bpT^o-^T 
= i, from which the result stated immediately follows. 
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We shall consider these laws now, in order to be able to 

apply them later. We shall deal first only with the 

properties of tensors with respect to the transformation 

from one Cartesian system to another in the same space 

of reference, by means of linear orthogonal transforma¬ 

tions. As the laws are wholly independent of the number 

of dimensions, we shall leave this number, n, indefinite at 

first. 

Definition. If a figure is defined with respect to every 

system of Cartesian co-ordinates in a space of reference of 

n dimensions by the na numbers A^p . . . (a = number 

of indices), then these numbers are the components of a 

tensor of rank a if the transformation law is 

iu.'v'p' • * • ^\u.'p.^v'v^p’p ■ * • ^ju.vp * • * • (7) 

Remark. From this definition it follows that 

jj.vp • • * ^ fidyD p ... . . (^) 

is an invariant, provided that (B), (Q, (Z?) . . . are 

vectors. Conversely, the tensor character of (A) may be 

inferred, if it is known that the expression (8) leads to an 

invariant for an arbitrary choice of the vectors (B), (C), 

etc. 

Addition and Subtraction. By addition and subtraction 

of the corresponding components of tensors of the same 

rank, a tensor of equal rank results : 

A ± B 
— P-Vp 

The proof follows from the definition of a tensor given 

above. 

Multiplication. From a tensor of rank a and a tensor 
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of rank /3 we may obtain a tensor of rank a + (3 by 

multiplying all the components of the first tensor by all 

the components of the second tensor : 

• • • afi • • • • • • -^a/3y • • • (^ O) 

Contraction. A tensor of rank a - 2 may be obtained 

from one of rank a by putting two definite indices equal 

to each other and then summing for this single index : 

T — a (- 
p • • • • • • v 

YA 
y ■'■Vmp • • •) • (ii) 

The proof is 

A' — h h h A 
-*1 fxp.p • * • t//uat/p.j3c/py • • • •‘-1 afiy ’ • ^afi^py • •• A 

= ... A 
afiy 

a ay 

In addition to these elementary rules of operation 

there is also the formation of tensors by differentiation 

(“ erweiterung ”): 

(12) T, 
■p.vp 

'P 

New tensors, in respect to linear orthogonal transforma¬ 

tions, may be formed from tensors according to these rules 

of operation. 

Symmetrical Properties of Tensors. Tensors are called 

symmetrical or skew-symmetrical in respect to two of 

their indices, ^ and v, if both the components which result 

from interchanging the indices and v are equal to each 

other or equal with opposite signs. 

Condition for symmetry: Apvp = Apvp. 

Condition for skew-symmetry: Ap„p = - A,,pp. 

Theorem. The character of symmetry or skew-symmetry 

exists independently of the choice of co-ordinates, and in 
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this lies its importance. The proof follows from the 

equation defining tensors. 

Special Tensors. 

I. The quantities 8pcr (4) are tensor components (funda¬ 

mental tensor). 

Proof. If in the right-hand side of the equation of 

transformation A\v = b^abvfiAa^ we substitute for Aafi the 

quantities 8afi (which are equal to I or o according as 

a = ft or a /3), we get 

/]' _ h h _ £ 

The justification for the last sign of equality becomes 

evident if one applies (4) to the inverse substitution (5). 

II. There is a tensor (8^vp . . .) skew-symmetrical with 

respect to all pairs of indices, whose rank is equal to the 

number of dimensions, n, and whose components are 

equal to + I or - 1 according as [xvp ... is an even 

or odd permutation of 123 . . . 

The proof follows with the aid of the theorem proved 

above \ bpa\ = 1. 

These few simple theorems form the apparatus from 

the theory of invariants for building the equations of pre¬ 

relativity physics and the theory of special relativity. 

We have seen that in pre-relativity physics, in order to 

specify relations in space, a body of reference, or a space 

of reference, is required, and, in addition, a Cartesian 

system of co-ordinates. We can fuse both these concepts 

into a single one by thinking of a Cartesian system of 

co-ordinates as a cubical frame-work formed of rods each 

of unit length. The co-ordinates of the lattice points of 
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this frame are integral numbers. It follows from the 

fundamental relation 

s2 = Arp + Ar22 + Ar32 

that the members of such a space-lattice are all of unit 

length. To specify relations in time, we require in 

addition a standard clock placed at the origin of our 

Cartesian system of co-ordinates or frame of reference. 

If an event takes place anywhere we can assign to it three 

co-ordinates, xvi and a time t, as soon as we have specified 

the time of the clock at the origin which is simultaneous 

with the event. We therefore give an objective signifi¬ 

cance to the statement of the simultaneity of distant 

events, while previously we have been concerned only 

with the simultaneity of two experiences of an individual. 

The time so specified is at all events independent of the 

position of the system of co-ordinates in our space of 

reference, and is therefore an invariant with respect to 

the transformation (3). 

It is postulated that the system of equations expressing 

the laws of pre-relativity physics is co-variant with respect 

to the transformation (3), as are the relations of Euclidean 

geometry. The isotropy and homogeneity of space is 

expressed in this way.* We shall now consider some of 

* The laws of physics could be expressed, even in case there were a 

unique direction in space, in such a way as to be co-variant with respect to 

the transformation (3); but such an expression would in this case be un¬ 

suitable. If there were a unique direction in space it would simplify the 

description of natural phenomena to orient the system of co-ordinates in a 

definite way in this direction. But if, on the other hand, there is no unique 

direction in space it is not logical to formulate the laws of nature in such 

a way as to conceal the equivalence of systems of co-ordinates that are 

2 
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the more important equations of physics from this point 

of view. 

The equations of motion of a material particle are 

**. y 

m~d¥. “ (14) 

(dxv) is a vector ; dt, and therefore also an invariant; 

thus (^r) is a vector ; in the same way it may be shown 

/ dsx \ 
that is a vector. In general, the operation of dif¬ 

ferentiation with respect to time does not alter the tensor 

character. Since in is an invariant (tensor of rank o), 

f d2xv\ 
\l~df ) lS a veci;or’ or tensor of rank I (by the theorem 

of the multiplication of tensors). If the force (Av) has 

a vector character, the same holds for the difference (d^x \ 
m~d¥ ~ Xv' ^ese equations of motion are therefore 

valid in every other system of Cartesian co-ordinates in 

the space of reference. In the case where the forces are 

conservative we can easily recognize the vector character 

of (Xv). For a potential energy, <F, exists, which depends 

only upon the mutual distances of the particles, and is 

therefore an invariant. The vector character of the force, 

Xv = - ^7, is then a consequence of our general theorem 

about the derivative of a tensor of rank o. 

oriented differently. We shall meet with this point of view again in the 

theories of special and general relativity. 
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Multiplying by the velocity, a tensor of rank i, we 

obtain the tensor equation 

dlx 
m r - X, 

\dx, 
& = o. 

dt2 "v) dt 

By contraction and multiplication by the scalar dt we 

obtain the equation of kinetic energy 

,2\ mq‘ 

= Xvdxv. 

If denotes the difference of the co-ordinates of 

the material particle and a point fixed in space, then 

the %v have the character of vectors. We evidently 

have 
d2xv d2^v 
dt2 ~ ~dd' SO ^at e9ua^10ns °f m°ti°n of the 

particle may be written 

Multiplying this equation by f we obtain a tensor 

equation 

(>*w - 

Contracting the tensor on the left and taking the time 

average we obtain the virial theorem, which we shall 

not consider further. By interchanging the indices and 

subsequent subtraction, we obtain, after a simple trans¬ 

formation, the theorem of moments, 

It is evident in this way that the moment of a vector 
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is not a vector but a tensor. On account of their skew- 

symmetrical character there are not nine, but only three 

independent equations of this system. The possibility of 

replacing skew-symmetrical tensors of the second rank in 

space of three dimensions by vectors depends upon the 

formation of the vector 

A — - A 8 
[i. CTT^CTTfl. 

If we multiply the skew-symmetrical tensor of rank 2 

by the special skew-symmetrical tensor 8 introduced 

above, and contract twice, a vector results whose compon¬ 

ents are numerically equal to those of the tensor. These 

are the so-called axial vectors which transform differ¬ 

ently, from a right-handed system to a left-handed system, 

from the There is a gain in picturesqueness in 

regarding a skew-symmetrical tensor of rank 2 as a vector 

in space of three dimensions, but it does not represent 

the exact nature of the corresponding quantity so well as 

considering it a tensor. 

We consider next the equations of motion of a con¬ 

tinuous medium. Let p be the density, uv the velocity 

components considered as functions of the co-ordinates and 

the time, Xv the volume forces per unit of mass, and pva 

the stresses upon a surface perpendicular to the c-axis 

in the direction of increasing xv. Then the equations of 

motion are, by Newton’s law, 

~^Pvcr -yjr 

PHi = " 55“ + Px* 

in which is the acceleration of the particle which at 
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time t has the co-ordinates x* If we express this 

acceleration by partial differential coefficients, we obtain, 

after dividing by p, 

"duv 

1st 
+ 

l 
P 

+ Xv (i 6) 

We must show that this equation holds independently 

of the special choice of the Cartesian system of co-ordinates. 

lsuv 'buv . 
(«„) is a vector, and therefore -r— is also a vector, r— is 

a tensor of rank 2, ^~^uT is a tensor of rank 3. The second 
OXg- 

term on the left results from contraction in the indices 

cr, r. The vector character of the second term on the right 

is obvious. In order that the first term on the right may 

also be a vector it is necessary for pv(J to be a tensor. 

^Pl<T 
Then by differentiation and contraction r—^ results, and 

0*0- 

is therefore a vector, as it also is after multiplication by 

the reciprocal scalar - • Thatpv(T is a tensor, and therefore 

transforms according to the equation 

P = ^na^vfipafl ) 

is proved in mechanics by integrating this equation over 

an infinitely small tetrahedron. It is also proved there 

by application of the theorem of moments to an infinitely 

small parallelopipedon, that pv(J = pav) and hence that the 

tensor of the stress is a symmetrical tensor. From what 

has been said it follows that, with the aid of the rules 
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given above, the equation is co-variant with respect to 

orthogonal transformations in space (rotational trans¬ 

formations) ; and the rules according to which the 

quantities in the equation must be transformed in order 

that the equation may be co-variant also become evident. 

The co-variance of the equation of continuity, 

tp Xpuv) 

37+ 

requires, from the foregoing, no particular discussion. 

We shall also test for co-variance the equations which 

express the dependence of the stress components upon 

the properties of the matter, and set up these equations 

for the case of a compressible viscous fluid with the aid 

of the conditions of co-variance. If we neglect the vis¬ 

cosity, the pressure, />, will be a scalar, and will depend 

only upon the density and the temperature of the fluid. 

The contribution to the stress tensor is then evidently 

pK* 
in which is the special symmetrical tensor. This term 

will also be present in the case of a viscous fluid. But in 

this case there will also be pressure terms, which depend 

upon the space derivatives of the uv. We shall assume 

that this dependence is a linear one. Since these terms 

must be symmetrical tensors, the only ones which enter 

will be 

(for r * is a scalar). For physical reasons (no slipping) 
a 
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it is assumed that for symmetrical dilatations in all 

directions, i.e. when 

bu2 bu3 bUj 

'bx1 ~ bx2 ~ bx2 ’ bx2 
, etc., = o, 

bx2 bx3 ’ bx2 

there are no frictional forces present, from which it 

2 1 bu, 
follows that /3 = - -a. If only ^7 is different from 

bu1 
zero, let p3l = - 77-—, by which a is determined. We 

then obtain for the complete stress tensor, 

rY^u . ^y\ 2{bU, bu2 bu3\ * “1 , 
(*s) 

The heuristic value of the theory of invariants, which 

arises from the isotropy of space (equivalence of all 

directions), becomes evident from this example. 

We consider, finally, Maxwell’s equations in the form 

which are the foundation of the electron theory of Lorentz. 

u3 I bex 
+ 

I 

dx2 ^x3 C bt c 

I be2 
+ 

1 

^3 Da*! c bi c 

• 

be. 

• 

be. 

• 

Tie. 
1 + + 0 _ p 

bx1 bx.2 bx 3 
r 

^3 _ 'be2 I bhx 

^2 bx2 c Tit 

be1 ^■3 I bh2 

^3 bxl c bt 

(19) 

• (20) 
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i is a vector, because the current density is defined as 

the density of electricity multiplied by the vector velocity 

of the electricity. According to the first three equations 

it is evident that e is also to be regarded as a vector. 

Then h cannot be regarded as a vector.* The equations 

may, however, easily be interpreted if h is regarded as a 

symmetrical tensor of the second rank. In this sense, we 

write /z23, k31) ^12j in place of hx, k2i hz respectively. Pay¬ 

ing attention to the skew-symmetry of k^, the first three 

equations of (19) and (20) may be written in the form 

_ 1 + L { 
bxv C bt C 11 

'K. - ^ = + I 
bxv bx^ C bt 

(19a) 

(20a) 

In contrast to e, h appears as a quantity which has the 

same type of symmetry as an angular velocity. The 

divergence equations then take the form 

= P . . . (i9b) 

+ 'bhyp bh?iX _ o 

bxp bx^ bxv 

The last equation is a skew-symmetrical tensor equation 

of the third rank (the skew-symmetry of the left-hand 

side with respect to every pair of indices may easily be 

* These considerations will make the reader familiar with tensor opera¬ 

tions without the special difficulties of the four-dimensional treatment; 

corresponding considerations in the theory of special relativity (Minkowski’s* 

interpretation of the field) will then offer fewer difficulties, 
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* 

1 

proved, if attention is paid to the skew-symmetry cf k^). 

This notation is more natural than the usual one, because, 

in contrast to the latter, it is applicable to Cartesian left- 

handed systems as well as to right-handed systems without 

change of sign. 



LECTURE II 

THE THEORY OF SPECIAL RELATIVITY 

THE previous considerations concerning the configura¬ 

tion of rigid bodies have been founded, irrespective 

of the assumption as to the validity of the Euclidean 

geometry, upon the hypothesis that all directions in space, 

or all configurations of Cartesian systems of co-ordinates, 

are physically equivalent. We may express this as the 

“ principle of relativity with respect to direction,” and it 

has been shown how equations (laws of nature) may be 

found, in accord with this principle, by the aid of the 

calculus of tensors. We now inquire whether there is a 

relativity with respect to the state of motion of the space 

of reference; in other words, whether there are spaces of 

reference in motion relatively to each other which are 

physically equivalent. From the standpoint of mechanics 

it appears that equivalent spaces of reference do exist. 

For experiments upon the earth tell us nothing of the 

fact that we are moving about the sun with a velocity of 

approximately 30 kilometres a second. On the other 

hand, this physical equivalence does not seem to hold for 

spaces of reference in arbitrary motion; for mechanical 

effects do not seem to be subject to the same laws in a 

jolting railway train as in one moving with uniform 

26 
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velocity; the rotation of the earth must be considered in 

writing down the equations of motion relatively to the 

earth. It appears, therefore, as if there were Cartesian 

systems of co-ordinates, the so-called inertial systems, with 

reference to which the laws of mechanics (more generally 

the laws of physics) are expressed in the simplest form. 

We may infer the validity of the following theorem : If 

K is an inertial system, then every other system K' which 

moves uniformly and without rotation relatively to K, is 

also an inertial system; the laws of nature are in con¬ 

cordance for all inertial systems. This statement we shall 

call the “ principle of special relativity.” We shall draw 

certain conclusions from this principle of “ relativity of 

translation ” just as we have already done for relativity of 

direction. 

In order to be able to do this, we must first solve the 

following problem. If we are given the Cartesian co¬ 

ordinates,^, and the time /, of an event relatively to one 

inertial system, K, how can we calculate the co-ordinates, 

xv, and the time, of the same event relatively to an 

inertial system K' which moves with uniform trans¬ 

lation relatively to K ? In the pre-relativity physics 

this problem was solved by making unconsciously two 

hypotheses :— 

i. The time is absolute; the time of an event, t\ 

relatively to K' is the same as the time relatively to K. 

If instantaneous signals could be sent to a distance, and 

if one knew that the state of motion of a clock had no 

influence on its rate, then this assumption would be 

physically established. For then clocks, similar to one 
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another, and regulated alike, could be distributed over 

the systems K and K\ at rest relatively to them, and 

their indications would be independent of the state of 

motion of the systems ; the time of an event would then 

be given by the clock in its immediate neighbourhood. 

2. Length is absolute ; if an interval, at rest relatively 

to K, has a length s, then it has the same length s, 

relatively to a system K' which is in motion relatively 

to K. 

If the axes of K and K' are parallel to each other, a 

simple calculation based on these two assumptions, gives 

the equations of transformation 

xv = xv - av - bvt 
t' = t - b 

This transformation is known as the “ Galilean Trans¬ 

formation.” Differentiating twice by the time, we get 

d2x v d2xv 

~dF = ~dFm 

Further, it follows that for two simultaneous events, 

J a) _ x (2) = ^ (1) _ (2) 

The invariance of the distance between the two points 

results from squaring and adding. From this easily 

follows the co-variance of Newton’s equations of motion 

with respect to the Galilean transformation (21). Hence 

it follows that classical mechanics is in accord with the 

principle of special relativity if the two hypotheses 

respecting scales and clocks are made. 

But this attempt to found relativity of translation upon 

the Galilean transformation fails when applied to electron 
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magnetic phenomena. The Maxwell-Lorentz electro¬ 

magnetic equations are not co-variant with respect to the 

Galilean transformation. In particular, we note, by (21), 

that a ray of light which referred to K has a velocity c, 

has a different velocity referred to K\ depending upon 

its direction. The space of reference of K is therefore 

distinguished, with respect to its physical properties, from 

all spaces of reference which are in motion relatively to it 

(quiescent sether). But all experiments have shown that 

electro-magnetic and optical phenomena, relatively to the 

earth as the body of reference, are not influenced by the 

translational velocity of the earth. The most important 

of these experiments are those of Michelson and Morley, 

which I shall assume are known. The validity of the 

principle of special relativity can therefore hardly be 

doubted. 

O11 the other hand, the Maxwell-Lorentz equations 

have proved their validity in the treatment of optical 

problems in moving bodies. No other theory has 

satisfactorily explained the facts of aberration, the 

propagation of light in moving bodies (Flzeau), and 

phenomena observed in double stars (De Sitter). The 

consequence of the Maxwell-Lorentz equations that in a 

vacuum light is propagated with the velocity c, at least 

with respect to a definite inertial system K, must there¬ 

fore be regarded as proved. According to the principle 

of special relativity, we must also assume the truth of 

this principle for every other inertial system. 

Before we draw any conclusions from these two 

principles we must first review the physical significance 
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of the concepts “time” and “velocity.” It follows from 

what has gone before, that co-ordinates with respect to 

an inertial system are physically defined by means of 

measurements and constructions with the aid of rigid 

bodies. In order to measure time, we have supposed a 

clock, Uy present somewhere, at rest relatively to K. But 

we cannot fix the time, by means of this clock, of an event 

whose distance from the clock is not negligible ; for there 

are no “ instantaneous signals ” that we can use in order 

to compare the time of the event with that of the clock. 

In order to complete the definition of time we may 

employ the principle of the constancy of the velocity of 

light in a vacuum. Let us suppose that we place similar 

clocks at points of the system K, at rest relatively to it, 

and regulated according to the following scheme. A ray 

of light is sent out from one of the clocks, Um, at the 

instant when it indicates the time tm) and travels through 

a vacuum a distance rmn} to the clock Un ; at the instant 

when this ray meets the clock Un the latter is set to 

indicate the time tn = tm 4- — .* The principle of the 
c 

constancy of the velocity of light then states that this 

adjustment of the clocks wall not lead to contradictions. 

With clocks so adjusted, we can assign the time to events 

which take place near any one of them. It is essential to 

* Strictly speaking, it would be more correct to define simultaneity first, 

somewhat as follows: two events taking place at the points A and B of 

the system K are simultaneous if they appear at the same instant when 

observed from the middle point, M, of the interval AB. Time is then 

defined as the ensemble of the indications of similar clocks, at rest 

relatively to K, which register the same simultaneously. 
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note that this definition of time relates only to the inertial 

system K, since we have used a system of clocks at rest 

relatively to K. The assumption which was made in the 

pre-relativity physics of the absolute character of time 

^i.e. the independence of time of the choice of the inertial 

system) does not follow at all from this definition. 

The theory of relativity is often criticized for giving, 

without justification, a central theoretical role to the 

propagation of light, in that it founds the concept of time 

upon the law of propagation of light. The situation, 

however, is somewhat as follows. In order to give 

physical significance to the concept of time, processes of 

some kind are required which enable relations to be 

established between different places. It is immaterial 

what kind of processes one chooses for such a definition 

of time. It is advantageous, however, for the theory, 

to choose only those processes concerning which we know 

something certain. This holds for the propagation of 

light in vacuo in a higher degree than for any other process 

which could be considered, thanks to the investigations 

of Maxwell and H. A. Lorentz. 

From all of these considerations, space and time data 

have a physically real, and not a mere fictitious, signifi¬ 

cance ; in particular this holds for all the relations in 

which co-ordinates and time enter, e.g. the relations 

(21). There is, therefore, sense in asking whether those 

equations are true or not, as well as in asking what the 

true equations of transformation are by which we pass 

from one inertial system K to another, K\ moving 

relatively to it. It may be shown that this is uniquely 
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settled by means of the principle of the constancy of the 

velocity of light and the principle of special relativity. 

To this end we think of space and time physically 

defined with respect to two inertial systems, K and K\ in 

the way that has been shown. Further, let a ray of light 

pass from one point P1 to another point P2 of K through 

a vacuum. If r is the measured distance between the two 

points, then the propagation of light must satisfy the 

equation 

r = c. At 

If we square this equation, and express r2 by the 

differences of the co-ordinates, Axv, in place of this equation 

we can write 

(A;rv)2 - c2A t2 = o . . (22) 

This equation formulates the principle of the constancy 

of the velocity of light relatively to K. It must hold 

whatever may be the motion of the source which emits 

the ray of light. 

The same propagation of light may also be considered 

relatively to K\ in which case also the principle of the 

constancy of the velocity of light must be satisfied. 

Therefore, with respect to K', we have the equation 

^>(ATV)2 - c2A/2 = o . (22a) 

Equations (22a) and (22) must be mutually consistent 

with each other with respect to the transformation which 

transforms from K to K\ A transformation which effects 

this we shall call a “Lorentz transformation.” 

Before considering these transformations in detail we 
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shall make a few general remarks about space and time. 

In the pre-relativity physics space and time were separ¬ 

ate entities. Specifications of time were independent of 

the choice of the space of reference. The Newtonian 

mechanics was relative with respect to the space of 

reference, so that, e.g. the statement that two non-simul- 

taneous events happened at the same place had no objective 

meaning (that is, independent of the space of reference). 

But this relativity had no role in building up the theory. 

One spoke of points of space, as of instants of time, as if 

they were absolute realities. It was not observed that 

the true element of the space-time specification was the 

event, specified by the four numbers xl} x2, xz, t. The 

conception of something happening was always that of a 

four-dimensional continuum ; but the recognition of this 

was obscured by the absolute character of the pre-relativity 

time. Upon giving up the hypothesis of the absolute 

character of time, particularly that of simultaneity, the 

four-dimensionality of the time-space concept was im¬ 

mediately recognized. It is neither the point in space, 

nor the instant in time, at which something happens that 

has physical reality, but only the event itself. There is 

no absolute (independent of the space of reference) relation 

in space, and no absolute relation in time between two 

events, but there is an absolute (independent of the space 

of reference) relation in space and time, as will appear in 

the sequel. The circumstance that there is no objective 

rational division of the four-dimensional continuum into 

a three-dimensional space and a one-dimensional time 

continuum indicates that the laws of nature will assume 

3 
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a form which is logically most satisfactory when expressed 

as laws in the four-dimensional space-time continuum. 

Upon this depends the great advance in method which 

the theory of relativity owes to Minkowski. Considered 

from this standpoint, we must regard xv x2, x3) t as the 

four co-ordinates of an event in the four-dimensional con¬ 

tinuum. We have far less success in picturing to ourselves 

relations in this four-dimensional continuum than in the 

three-dimensional Euclidean continuum ; but it must be 

emphasized that even in the Euclidean three-dimensional 

geometry its concepts and relations are only of an abstract 

nature in our minds, and are not at all identical with the 

images we form visually and through our sense of touch. 

The non-divisibility of the four-dimensional continuum 

of events does not at all, however, involve the equivalence 

of the space co-ordinates with the time co-ordinate. On 

the contrary, we must remember that the time co-ordinate 

is defined physically wholly differently from the space 

co-ordinates. The relations (22) and (22a) which when 

equated define the Lorentz transformation show, further, 

a difference in the role of the time co-ordinate from that 

of the space co-ordinates ; for the term At2 has the opposite 

sign to the space terms, Ax2, Ax22, Ax32. 

Before we analyse further the conditions which define 

the Lorentz transformation, we shall introduce the light¬ 

time, l = ct, in place of the time, t, in order that the 

constant c shall not enter explicitly into the formulas to 

be developed later. Then the Lorentz transformation is 

defined in such a way that, first, it makes the equation 

Ax2 + Ax2 + Ax3 - Al2 = o . (22b) 
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a co-variant equation, that is, an equation which is satisfied 

with respect to every inertial system if it is satisfied in 

the inertial system to which we refer the two given events 

(emission and reception of the ray of light). Finally, 

with Minkowski, we introduce in place of the real time 

co-ordinate / = ct, the imaginary time co-ordinate 

= il = ict - I = z). 

Then the equation defining the propagation of light, 

which must be co-variant with respect to the Lorentz 

transformation, becomes 

}Ax2 = A;tq2 + A^22 + A;r32 + A^42 = o (22c) 

(4) 

This condition is always satisfied * if we satisfy the more 

general condition that 

s2 = A^!2 + A^22 + A^32 + A^42 . (23) 

shall be an invariant with respect to the transformation. 

This condition is satisfied only by linear transformations, 

that is, transformations of the type 

■ ■ ■ (24) 

in which the summation over the a is to be extended 

from a = I to a = 4. A glance at equations (23) and 

(24) shows that the Lorentz transformation so defined is 

identical with the translational and rotational transforma¬ 

tions of the Euclidean geometry, if we disregard the 

number of dimensions and the relations of reality. We 

* That this specialization lies in the nature of the case will be evident 

later. 
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can also conclude that the coefficients bMa must satisfy the 

conditions 

^\iafyva iv ^ av . (25) 
Since the ratios of the xv are real, it follows that all the 

a,a and the bMa are real, except biV b±2, b±3, bw bu, and 

£34, which are purely imaginary. 

Special Lorentz Transformation. We obtain the 

simplest transformations of the type of (24) and (25) if 

only two of the co-ordinates are to be transformed, and if 

all the which determine the new origin, vanish. We 

obtain then for the indices 1 and 2, on account of the 

three independent conditions which the relations (25) 

furnish, 

x\ — xY cos cf) - x2 sin <£ 
x\ = xx sin <f> + x2 cos <jf> 
x3 = x3 
x\ = 

(26) 

This is a simple rotation in space of the (space) 

co-ordinate system about ^3-axis. We see that the 

rotational transformation in space (without the time 

transformation) which we studied before is contained in 

the Lorentz transformation as a special case. For the 

indices 1 and 4 we obtain, in an analogous manner, 

x\ = x1 cos \fr - x± sin yfr 
x\ — xx sin y/r + x4 cos yjr 
X o =a X n 

X 3 = *3 I (26a) 

On account of the relations of reality yjr must be taken 

as imaginary. To interpret these equations physically, 

we introduce the real light-time l and the velocity v of 
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K' relatively to K, instead of the imaginary angle yjr. We 

have, first, 
x\ = x\ cos ^ _ sin yjr 
l — - MTj sin yjr + / cos 

Since for the origin of K\ i.e., for xx = o, we must have 

Aq == it follows from the first of these equations that 

and also 

so that we obtain 

v = i tan -v/r 

sin y\r = 
- iv 

s/l - V1 

COS yjr = 7= 
F2/ 

-T, = 

/' = 

xx - vl ^ 

Jl - z/2 

/ - ZUq 

v/T “ v ‘2 

X2 
Xo = ^ 

(27) 

(28) 

(29) 

These equations form the well-known special Lorentz 

transformation, which in the general theory represents a 

rotation, through an imaginary angle, of the four-dimen¬ 

sional system of co-ordinates. If we introduce the ordinary 

time t, in place of the light-time /, then in (29) we must 

v 
replace l by ct and v by -• 

We must now fill in a gap. From the principle of the 

constancy of the velocity of light it follows that the 

equation 

A.V2 = o 
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has a significance which is independent of the choice of 

the inertial system ; but the invariance of the quantity 

does not at all follow from this. This quantity 

might be transformed with a factor. This depends upon 

the fact that the right-hand side of (29) might be multi¬ 

plied by a factor independent of v. But the principle 

of relativity does not permit this factor to be different from 

1, as we shall now show. Let us assume that we have 

a rigid circular cylinder moving in the direction of its 

axis. If its radius, measured at rest with a unit measur¬ 

ing rod is equal to R0i its radius R in motion, might be 

different from R0, since the theory of relativity does not 

make the assumption that the shape of bodies with respect 

to a space of reference is independent of their motion 

relatively to this space of reference. But all directions 

in space must be equivalent to each other. R may there¬ 

fore depend upon the magnitude q of the velocity, but 

not upon its direction; R must therefore be an even 

function of q. If the cylinder is at rest relatively to K' 

the equation of its lateral surface is 

;r'2 + /2 = R02. 

If we write the last two equations of (29) more generally 

then the lateral surface of the cylinder referred to K 

satisfies the equation 

R 2 
-^0 
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The factor X therefore measures the lateral contraction of 

the cylinder, and can thus, from the above, be only an 

even function of v. 

If we introduce a third system of co-ordinates, K", 

which moves relatively to K' with velocity v in the direc¬ 

tion of the negative ^r-axis of K, we obtain, by apply¬ 

ing (29) twice, 

x\ — X(z;)X( - v)x± 

• • • • 

/" = X(v)X( - v)l. 

Now, since \(v) must be equal to X( - v), and since we 

assume that we use the same measuring rods in all the 

systems, it follows that the transformation of K" to K 

must be the identical transformation (since the possibility 

X = — I does not need to be considered). It is essential 

for these considerations to assume that the behaviour of 

the measuring rods does not depend upon the history of 

their previous motion. 

Moving Measuring Rods and Clocks. At the definite K- 

time, l=o, the position of the points given by the integers 

x\ = n, is with respect to K, given by xx = nyj 1 - v2,; 

this follows from the first of equations (29) and expresses 

the Lorentz contraction. A clock at rest at the origin 

xY = o of K, whose beats are characterized by / = n, will, 

when observed from K', have beats characterized by 

n 

1 = Vr=7^; 
this follows from the second of equations (29) and shows 
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that the clock goes slower than if it were at rest relatively 

to K'. These two consequences, which hold, mutatis 

mutandis, for every system of reference, form the physical 

content, free from convention, of the Lorentz transforma¬ 

tion. 

Addition Theorem for Velocities. If we combine two 

special Lorentz transformations with the relative velocities 

v1 and v2, then the velocity of the single Lorentz trans¬ 

formation which takes the place of the two separate ones 

is, according to (27), given by 

vu =1 

, , , N . tan 'vk + tan aK 
tan (* x + _ t;n ^ tan\ = 

V, + V, 

2 1 + ^2 ’ 
(30) 

General Statements about the Lorentz Transformation 

and its Theory of Invariants. The whole theory of 

invariants of the special theory of relativity depends upon 

the invariant a2 (23). Formally, it has the same role in 

the four-dimensional space-time continuum as the in¬ 

variant A-vp + Arq2 + A^32 in the Euclidean geometry 

and in the pre-relativity physics. The latter quantity is 

not an invariant with respect to all the Lorentz transfor¬ 

mations; the quantity a2 of equation (23) assumes the 

role of this invariant. With respect to an arbitrary 

inertial system, a2 may be determined by measurements ; 

with a given unit of measure it is a completely determinate 

quantity, associated with an arbitrary pair of events. 

The invariant a2 differs, disregarding the number of 

dimensions, from the corresponding invariant of the 

Euclidean geometry in the following points. In the 

Euclidean geometry a2 is necessarily positive ; it vanishes 
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only when the two points concerned come together. On 

the other hand, from the vanishing of 

s2 = ^Aav = A-t'f + Aal2 + Aa'32 - A t2 

l 

it cannot be concluded that the two space-time points 

fall together; the vanishing of this quantity s2, is the 

invariant condition that the two space-time points can be 

connected by a light signal in vacuo. If P is a point 
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(event) represented in the four-dimensional space of the 

xv x2i x3) /, then all the “ points ” which can be connected 

to P by means of a light signal lie upon the cone s2 — o 

(compare Fig. I, in which the dimension x3 is suppressed). 

The “ upper ” half of the cone may contain the “ points ” 

to which light signals can be sent from P; then the 

“ lower ” half of the cone will contain the “ points ” from 

which light signals can be sent to P. The points P' 

enclosed by the conical surface furnish, with P, a negative 

s2; PP', as well as P'P is then, according to Minkowski, 

of the nature of a time. Such intervals represent elements 

of possible paths of motion, the velocity being less than 

that of light.* In this case the /-axis may be drawn in 

the direction of PP' by suitably choosing the state of 

motion of the inertial system. If P' lies outside of the 

“light-cone” then PP' is of the nature of a space; in 

this case, by properly choosing the inertial system, A/ 

can be made to vanish. 

By the introduction of the imaginary time variable, 

x± = z7, Minkowski has made the theory of invariants for 

the four-dimensional continuum of physical phenomena 

fully analogous to the theory of invariants for the three- 

dimensional continuum of Euclidean space. The theory 

of four-dimensional tensors of special relativity differs from 

the theory of tensors in three-dimensional space, therefore, 

only in the number of dimensions and the relations of 

reality. 

* That material velocities exceeding that of light are not possible, 

follows from the appearance of the radical i - v2 in the special Lorentz 

transformation (29). 



SPECIAL RELATIVITY 43 

A physical entity which is specified by four quantities, 

Av, in an arbitrary inertial system of the xly x2, x3, x±, is 

called a 4-vector, with the components Av, if the Av 

correspond in their relations of reality and the properties 

of transformation to the Axv; it may be of the nature of 

a space or of a time. The sixteen quantities, A^v then 

form the components of a tensor of the second rank, if 

they transform according to the scheme 

A fiV * 

It follows from this that the A^v behave, with respect to 

their properties of transformation and their properties 

of reality, as the products of components, U^Vv, of two 

4-vectors, (£7) and (V). All the components are real 

except those which contain the index 4 once, those being 

purely imaginary. Tensors of the third and higher ranks 

may be defined in an analogous way. The operations 

of addition, subtraction, multiplication, contraction and 

differentiation for these tensors are wholly analogous to 

the corresponding operations for tensors in three-dimen¬ 

sional space. 

Before we apply the tensor theory to the four-dimen¬ 

sional space-time continuum, we shall examine more 

particularly the skew-symmetrical tensors. The tensor 

of the second rank has, in general, 16 = 4.4 components. 

In the case of skew-symmetry the components with two 

equal indices vanish, and the components with unequal 

indices are equal and opposite in pairs. There exist, 

therefore, only six independent components, as is the 

case in the electromagnetic field. In fact, it will be shown 
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when we consider Maxwell’s equations that these may 

be looked upon as tensor equations, provided we regard 

the electromagnetic field as a skew-symmetrical tensor. 

Further, it is clear that the skew-symmetrical tensor of 

the third rank (skew-symmetrical in all pairs of indices) 

has only four independent components, since there are 

only four combinations of three different indices. 

We now turn to Maxwell’s equations (19a), (19b), (20a)> 

(20b), and introduce the notation : * 

023 
^23 

031 
h3i 

012 
hi2 

014 
- ie* 

024 03il 
- tey - iezj 

■ (30a) 

Ji 
1 

/. 
I 

/a 
I i . • (30 

'cl* - iy 
c 

- \z 
c z ip\ 1 

with the convention that </>M„ shall be equal to *pvix' 
Then Maxwell’s equations may be combined into the 

forms 

A 

3 ^ iii' 3<Lcr 3 rf-1 u )L 

tx* 

(32) 

(33) 

as one can easily verify by substituting from (30a) and 

(31). Equations (32) and (33) have a tensor character, 

and are therefore co-variant with respect to Lorentz 

transformations, if the <£MJ, and the J,x have a tensor 

character, which we assume. Consequently, the laws for 

* In order to avoid confusion from now on we shall use the three- 

dimensional space indices, x, y, z instead of 1, 2, 3, and we shall reserve 

the numeral indices 1, 2, 3, 4 for the four-dimensional space-time con¬ 

tinuum. 
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transforming these quantities from one to another allow¬ 

able (inertial) system of co-ordinates are uniquely 

determined. The progress in method which electro¬ 

dynamics owes to the theory of special relativity lies 

principally in this, that the number of independent 

hypotheses is diminished. If we consider, for example, 

equations (19a) only from the standpoint of relativity of 

direction, as we have done above, we see that they have 

three logically independent terms. The way in which 

the electric intensity enters these equations appears to 

be wholly independent of the way in which the magnetic 

intensity enters them ; it would not be surprising if instead 

c)2e 
of -^jr, we had, say, or if this term were absent. On 

the other hand, only two independent terms appear in 

equation (32). The electromagnetic field appears as a 

formal unit; the way in which the electric field enters 

this equation is determined by the way in which the 

magnetic field enters it. Besides the electromagnetic 

field, only the electric current density appears as an 

independent entity. This advance in method arises from 

the fact that the electric and magnetic fields draw their 

separate existences from the relativity of motion. A 

field which appears to be purely an electric field, judged 

from one system, has also magnetic field components 

when judged from another inertial system. When applied 

to an electromagnetic field, the general law of transforma¬ 

tion furnishes, for the special case of the special Lorentz 

transformation, the equations 
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X h'* = h* -j 
Cy — V\\z , , K + 

y \J I - V2 > x/i -^4 
e* + vhy , , - vey 

*/ I - V2 * v/l -vJ 

If there exists with respect to K only a magnetic field, 

h, but no electric field, e, then with respect to K' there 

exists an electric field e' as well, which would act upon 

an electric particle at rest relatively to K'. An observer 

at rest relatively to K would designate this force as the 

Biot-Savart force, or the Lorentz electromotive force. It 

therefore appears as if this electromotive force had become 

fused with the electric field intensity into a single entity. 

In order to view this relation formally, let us consider 

the expression for the force acting upon unit volume of 

electricity, 
k = pe + [i, h] . . . (35) 

in which i is the vector velocity of electricity, with the 

velocity of light as the unit. If we introduce and 

according to (30a) and (31), we obtain for the first 

component the expression 

$12 J2 + ^13^3 + 
Observing that <f)n vanishes on account of the skew- 

symmetry of the tensor (<£), the components of k are given 

by the first three components of the four-dimensional 

vector 

= Jv (3^) 
and the fourth component is given by 

+ fy&J2 fy&J3 ~ "f" = ^ • (37) 
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There is, therefore, a four-dimensional vector of force per 

unit volume, whose first three components, kv k.2) k3, are 

the ponderomotive force components per unit volume, and 

whose fourth component is the rate of working of the field 

per unit volume, multiplied by ^ - I. 

A comparison of (36) and (35) shows that the theory 

of relativity formally unites the ponderomotive force of 

the electric field, pe, and the Biot-Savart or Lorentz 

force [i, h]. 



48 THE MEANING OF RELATIVITY 

Mass and Energy. An important conclusion can be 

drawn from the existence and significance of the 4-vector 

Let us imagine a body upon which the electro¬ 

magnetic field acts for a time. In the symbolic figure 

(Fig. 2) Oxl designates the ^-axis, and is at the same 

time a substitute for the three space axes Oxv Ox2, Oxs ; 

01 designates the real time axis. In this diagram a body 

of finite extent is represented, at a definite time /, by the 

interval AB ; the whole space-time existence of the body 

is represented by a strip whose boundary is everywhere 

inclined less than 450 to the /-axis. Between the time 

sections, l = and / = /2, but not extending to them, 

a portion of the strip is shaded. This represents the 

portion of the space-time manifold in which the electro¬ 

magnetic field acts upon the body, or upon the electric 

charges contained in it, the action upon them being 

transmitted to the body. We shall now consider the 

changes which take place in the momentum and energy 

of the body as a result of this action. 

We shall assume that the principles of momentum 

and energy are valid for the body. The change in 

momentum, A IX) A ly, A A, and the change in energy, A E, 

are then given by the expressions 
‘1 

M, - UW Xdxdydz — Jr^K1dx1dx2dx3dx4 
h 

A E = 

/o 

~K\dxyix2dxzdxi 
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Since the four-dimensional element of volume is an 

invariant, and (Kv K2, K3, W4) forms a 4-vector, the four- 

dimensional integral extended over the shaded portion 

transforms as a 4-vector, as does also the integral between 

the limits /x and /2, because the portion of the region which 

is not shaded contributes nothing to the integral. It 

follows, therefore, that A/*, A/v, AIz, i^E form a 4-vector. 

Since the quantities themselves transform in the same 

way as their increments, it follows that the aggregate of 

the four quantities 

A, 4 4 iE 

has itself the properties of a vector; these quantities are 

referred to an instantaneous condition of the body (e.g. at 

the time l = 4. 

This 4-vector may also be expressed in terms of the 

mass ;//, and the velocity of the body, considered as a 

material particle. To form this expression, we note first, 

that 

- ds°- = dr2 = - (dx2 + dxd + dx2) - dx2 = dl2{\ - q2') (38; 

is an invariant which refers to an infinitely short portion 

of the four-dimensional line which represents the motion 

of the material particle. The physical significance of the 

invariant dr may easily be given. If the time axis is 

chosen in such a way that it has the direction of the line 

differential which we are considering, or, in other words, 

if we reduce the material particle to rest, we shall then 

have dr = dl; this will therefore be measured by the 

light-seconds clock which is at the same place, and at 

rest relatively to the material particle. We therefore call 

4 
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r the proper time of the material particle. As opposed 

to dl, dr is therefore an invariant, and is practically 

equivalent to dl for motions whose velocity is small 

compared to that of light. Hence we see that 

• • • (39) 
dr 

has, just as the dxvi the character of a vector ; we shall 

designate (uv) as the four-dimensional vector (in brief, 

4-vector) of velocity. Its components satisfy, by (38), 

the condition 

= -1. . . . (40) 

We see that this 4-vector, whose components in the 

ordinary notation are 

Qx Q y Q s i 

T^l1’ Vi - 7 7^1- 7^7 (41) 

is the only 4-vector which can be formed from the velocity 

components of the material particle which are defined in 

three dimensions by 

_ dx _ dy _ dz 

q* ~ Jl' ^ tl' q’~ ic 
We therefore see that 

(42) 

must be that 4-vector which is to be equated to the 

4-vector of momentum and energy whose existence we 

have proved above. By equating the components, we 

obtain, in three-dimensional notation, 
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L = 

x/1 " f 

E = 
in 

n/I - ?2J 

(43) 

We recognize, in fact, that these components of 

momentum agree with those of classical mechanics for 

velocities which are small compared to that of light. For 

large velocities the momentum increases more rapidly 

than linearly with the velocity, so as to become infinite 

on approaching the velocity of light. 

If we apply the last of equations (43) to a material 

particle at rest (q = o), we see that the energy, if0, of a 

body at rest is equal to its mass. Had we chosen the 

second as our unit of time, we would have obtained 

E0 = me1 . . . (44) 

Mass and energy are therefore essentially alike ; they are 

only different expressions for the same thing. The mass 

of a body is not a constant; it varies with changes in its 

energy.* We see from the last of equations (43) that E 

becomes infinite when q approaches I, the velocity of 

light. If we develop E in powers of q2, we obtain, 

r* in o 3 4 / v 
E = m + —q* + |mq* + . . . . (45) 

2 o 

* The emission of energy in radioactive processes is evidently connected 

with the fact that the atomic weights are not integers. Attempts have 

been made to draw conclusions from this concerning the structure and 

stability of the atomic nuclei. 
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The second term of this expansion corresponds to the 

kinetic energy of the material particle in classical 

mechanics. 

Equations of Motion of Material Particles. From (43) 

we obtain, by differentiating by the time /, and using 

the principle of momentum, in the notation of three- 

dimensional vectors, 

This equation, which was previously employed by 

H. A. Lorentz for the motion of electrons, has been 

proved to be true, with great accuracy, by experiments 

with /5-rays. 

Energy Tensor of the Electromagnetic Field. Before the 

development of the theory of relativity it was known 

that the principles of energy and momentum could 

be expressed in a differential form for the electro¬ 

magnetic field. The four-dimensional formulation of 

these principles leads to an important conception, that of 

the energy tensor, which is important for the further 

development of the theory of relativity. 

If in the expression for the 4-vector of force per unit 

volume, 

using the field equations (32), we express in terms of 

the field intensities, we obtain, after some trans¬ 

formations and repeated application of the field equations 

(32) and (33), the expression 

(47) 
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where we have written * 

(48) 

The physical meaning of equation (47) becomes evident 

if in place of this equation we write, using a new 

notation, 

iX = 

'tip XX: 'tiPxy tipxx a(i^) 
tix 

• 
1 

• • 

1 

tiz m 
• 

Xis*) 
• • 

2(1%) 2(>s.) X - v) 
dx ti)y tiz 2(10 

(47a) 

or, on eliminating the imaginary, 

K 

x = 

tip XX tip xy tip XX 2£, 

tix tiz ti/ 

y 
• • • • 

tiSx tiSy tisx tirj 

tix tiz til 

(47b) 

When expressed in the latter form, we see that the 

first three equations state the principle of momentum ; 

Pxx • • • pxx are the Maxwell stresses in the electro¬ 

magnetic field, and (bx, byi bz) is the vector momentum 

per unit volume of the field. The last of equations (47b) 

expresses the energy principle; s is the vector flow of 

energy, and 77 the energy per unit volume of the field. 

In fact, we get from (48) by introducing the well-known 

expressions for the components of the field intensity from 

electrodynamics, 

* To be summed for the indices a and /3, 
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pxx — — + -J(h*2 + h/ + hy) 
- exey + ie,2 + e/ + e,2) 

1 

Pxy ^hj/ P xz 

— QxGy 

- hxhz 

(48 a) 

bx sx ©jhs 62 hy 

We conclude from (48) that the energy tensor of the 

electromagnetic field is symmetrical; with this is con¬ 

nected the fact that the momentum per unit volume and 

the flow of energy are equal to each other (relation 

between energy and inertia). 

We therefore conclude from these considerations that 

the energy per unit volume has the character of a tensor. 

This has been proved directly only for an electromagnetic 

field, although we may claim universal validity for it. 

Maxwell’s equations determine the electromagnetic field 

when the distribution of electric charges and currents is 

known. But we do not know the laws which govern 

the currents and charges. We do know, indeed, that 

electricity consists of elementary particles (electrons, 

positive nuclei), but from a theoretical point of view we 

cannot comprehend this. We do not know the energy 

factors which determine the distribution of electricity in 

particles of definite size and charge, and all attempts to 

complete the theory in this direction have failed. If then 

we can build upon Maxwell’s equations in general, the 
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energy tensor of the electromagnetic field is known only 

outside the charged particles.* In these regions, outside 

of charged particles, the only regions in which we can 

believe that we have the complete expression for the 

energy tensor, we have, by (47), 

IT, txv 
= O (47c) 

General Expressions for the Conservation Principles. We 

can hardly avoid making the assumption that in all other 

cases, also, the space distribution of energy is given by a 

symmetrical tensor, T)X, and that this complete energy 

tensor everywhere satisfies the relation (47c). At any 

rate we shall see that by means of this assumption we 

obtain the correct expression for the integral energy 

principle. 

Let us consider a spatially bounded, closed system, 

which, four-dimensionally, we may represent as a strip, 

outside of which the T^v vanish. Integrate equation 

(47c) over a space section. Since the integrals of 

tT. ̂1 
r—, -r—^- and -r—1— vanish because the Tuv vanish at the 
oxl ’ ^x» Lr3 ^ 

limits of integration, we obtain 

(I 
57I I T^dxydx^ o (49) 

Inside the parentheses are the expressions for the 

* It has been attempted to remedy this lack of knowledge by considering 

the charged particles as proper singularities. But in my opinion this means 

giving up a real understanding of the structure of matter. It seems to me 

much better to give in to our present inability rather than to be satisfied 

by a solution that is only apparent. 
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momentum of the whole system, multiplied by z, together 

with the negative energy of the system, so that (49) 

expresses the conservation principles in their integral 

form. That this gives the right conception of energy and 

I 

the conservation principles will be seen from the following 

considerations. 

Phenomenological Representation of the 

Energy Tensor of Matter. 

Hydrodynamical Equations. We know that matter is 

built up of electrically charged particles, but we do not 
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know the laws which govern the constitution of these 

particles. In treating mechanical problems, we are there¬ 

fore obliged to make use of an inexact description of 

matter, which corresponds to that of classical mechanics. 

The density <7, of a material substance and the hydro- 

dynamical pressures are the fundamental concepts upon 

which such a description is based. 

Let cr0 be the density of matter at a place, estimated 

with reference to a system of co-ordinates moving with 

the matter. Then cr0, the density at rest, is an invariant. 

If we think of the matter in arbitrary motion and neglect 

the pressures (particles of dust in vacuo, neglecting the 

size of the particles and the temperature), then the energy 

tensor will depend only upon the velocity components, 

uv and cr0. We secure the tensor character of T^v by 

putting 

T,V &Q M^jUy . . . (50) 

in which the uin the three-dimensional representation, 

are given by (41). In fact, it follows from (50) that for 

q — o, 7"44 = - <70 (equal to the negative energy per unit 

volume), as it should, according to the theorem of the 

equivalence of mass and energy, and according to the 

physical interpretation of the energy tensor given above. 

If an external force (four-dimensional vector, WJ acts 

upon the matter, by the principles of momentum and 

energy the equation 
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must hold. We shall now show that this equation leads 

to the same law of motion of a material particle as that 

already obtained. Let us imagine the matter to be of 

infinitely small extent in space, that is, a four-dimensional 

thread ; then by integration over the whole thread with 

respect to the space co-ordinates aq, x2, ;r3, we obtain 

^K‘1dx1dx2dx2 ^dL*dx, dx.dxo = J Ltq 1 ^ 3 
.d 
1— 
dl 

dx, dx., , j 

dr dr 123 

Now jdxYdxtflx%dx± is an invariant, as is, therefore, also 

r• 

j(T^dx^dx^dx%dx^. We shall calculate this integral, first 

with respect to the inertial system which we have chosen, 

and second, with respect to a system relatively to which 

the matter has the velocity zero. The integration is to 

be extended over a filament of the thread for which cr0 

may be regarded as constant over the whole section. If 

the space volumes of the filament referred to the two 

systems are dV and dV0 respectively, then we have 

L0dV<il = [cr^dVfjdT 

and therefore also 

Jcr0dV = = jd/n i 
. dr 

dx\ 

If we substitute the right-hand side for the left-hand 

, . dx 
side in the former integral, and put ~ outside the sign 

dr 
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of integration, we obtain, 

is _ d(,Jxi\ _ d ( m\ 
K* ~ diK^) ~ dkjnr?) 

We see, therefore, that the generalized conception of the 

energy tensor is in agreement with our former result. 

The Eulerian Equations for Perfect Fluids. In order 

to get nearer to the behaviour of real matter we must add 

to the energy tensor a term which corresponds to the 

pressures. The simplest case is that of a perfect fluid in 

which the pressure is determined by a scalar p. Since 

the tangential stresses pxy, etc., vanish in this case, the 

contribution to the energy tensor must be of the form 

p8vll. We must therefore put 

T^ — <?upuv + pS^ . . (5 0 

At rest, the density of the matter, or the energy per unit 

volume, is in this case, not a but a - p. For 

(7 
dx4 dx i 

dr dr 
a - p. 

In the absence of any force, we have 

dT, fXV 

dx„ 

duu d(auh) 
<ruvZ—- + u)L + ¥  

dx, dXv dx, 
= o. 

If we multiply this equation by ua 

the fs we obtain, using (40), 

and sum for 
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where we have put This is the equation of 
'bxfL dr dr 

continuity, which differs from that of classical mechanics 

by the term which, practically, is vanishingly small. 
dr 

Observing (52), the conservation principles take the form 

+ «, 

dp 

Ldr 
+ 

The equations for the first three indices evidently corre¬ 

spond to the Eulerian equations. That the equations 

(52) and (53) correspond, to a first approximation, to the 

hydrodynamical equations of classical mechanics, is a 

further confirmation of the generalized energy principle. 

The density of matter and of energy has the character of 

a symmetrical tensor. 



LECTURE III 

THE GENERAL THEORY OF RELATIVITY 

ALL of the previous considerations have been based 

upon the assumption that all inertial systems are 

equivalent for the description of physical phenomena, but 

that they are preferred, for the formulation of the laws 

of nature, to spaces of reference in a different state of 

motion. We can think of no cause for this preference 

for definite states of motion to all others, according to 

our previous considerations, either in the perceptible 

bodies or in the concept of motion ; on the contrary, it 

must be regarded as an independent property of the 

space-time continuum. The principle of inertia, in 

particular, seems to compel us to ascribe physically 

objective properties to the space-time continuum. Just 

as it was necessary from the Newtonian standpoint to 

make both the statements, tempus est absolutum, spatium 

est absolutum, so from the standpoint of the special theory 

of relativity we must say, continuum spatii et temporis est 

absolutum. In this latter statement absolutum means not 

only “physically real,” but also “independent in its 

physical properties, having a physical effect, but not itself 

influenced by physical conditions.” 

As long as the principle of inertia is regarded as the 
61 
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keystone of physics, this standpoint is certainly the only 

one which is justified. But there are two serious criticisms 

of the ordinary conception. In the first place, it is contrary 

to the mode of thinking in science to conceive of a thing 

(the space-time continuum) which acts itself, but which 

cannot be acted upon. This is the reason why E. Mach 

was led to make the attempt to eliminate space as an 

active cause in the system of mechanics. According to 

him, a material particle does not move in unaccelerated 

motion relatively to space, but relatively to the centre of 

all the other masses in the universe; in this way the 

series of causes of mechanical phenomena was closed, in 

contrast to the mechanics of Newton and Galileo. In 

order to develop this idea within the limits of the modern 

theory of action through a medium, the properties of 

the space-time continuum which determine inertia must 

be regarded as field properties of space, analogous to 

the electromagnetic field. The concepts of classical 

mechanics afford no way of expressing this. For this 

reason Mach’s attempt at a solution failed for the time 

being. We shall come back to this point of view later. 

In the second place, classical mechanics indicates a 

limitation which directly demands an extension of the 

principle of relativity to spaces of reference which are not 

in uniform motion relatively to each other. The ratio of 

the masses of two bodies is defined in mechanics in two 

ways which differ from each other fundamentally; in the 

first place, as the reciprocal ratio of the accelerations 

which the same motional force imparts to them (inert 

mass), and in the second place, as the ratio of the forces 
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which act upon them in the same gravitational held 

(gravitational mass). The equality of these two masses, 

so differently defined, is a fact which is confirmed by 

experiments of very high accuracy (experiments of Edtvos), 

and classical mechanics offers no explanation for this 

equality. It is, however, clear that science is fully justified 

in assigning such a numerical equality only after this 

numerical equality is reduced to an equality of the real 

nature of the two concepts. 

That this object may actually be attained by an exten¬ 

sion of the principle of relativity, follows from the follow¬ 

ing consideration. A little reflection will show that the 

theorem of the equality of the inert and the gravitational 

mass is equivalent to the theorem that the acceleration 

imparted to a body by a gravitational field is independent 

of the nature of the body. For Newton’s equation of 

motion in a gravitational field, written out in full, is 

(Inert mass). (Acceleration) = (Intensity of the 

gravitational field) . (Gravitational mass). 

It is only when there is numerical equality between the 

inert and gravitational mass that the acceleration is in¬ 

dependent of the nature of the body. Let now K be an 

inertial system. Masses which are sufficiently far from 

each other and from other bodies are then, with respect 

to Y, free from acceleration. We shall also refer these 

masses to a system of co-ordinates K\ uniformly acceler¬ 

ated with respect to K. Relatively to K' all the masses 

have equal and parallel accelerations ; with respect to K' 
they behave just as if a gravitational field were present and 
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K' were unaccelerated. Overlooking for the present the 

question as to the “ cause ” of such a gravitational field, 

which will occupy us later, there is nothing to prevent 

our conceiving this gravitational field as real, that is, the 

conception that K' is “ at rest ” and a gravitational field 

is present we may consider as equivalent to the concep¬ 

tion that only K is an “ allowable ” system of co-ordinates 

and no gravitational field is present. The assumption of 

the complete physical equivalence of the systems of co¬ 

ordinates, K and K\ we call the “ principle of equival¬ 

ence;” this principle is evidently intimately connected 

with the theorem of the equality between the inert and 

the gravitational mass, and signifies an extension of the 

principle of relativity to co-ordinate systems which are 

in non-uniform motion relatively to each other. In fact, 

through this conception we arrive at the unity of the 

nature of inertia and gravitation. For according to our 

way of looking at it, the same masses may appear to be 

either under the action of inertia alone (with respect to 

K) or under the combined action of inertia and gravita¬ 

tion (with respect to K). The possibility of explaining 

the numerical equality of inertia and gravitation by the 

unity of their nature gives to the general theory of 

relativity, according to my conviction, such a superiority 

over the conceptions of classical mechanics, that all the 

difficulties encountered in development must be considered 

as small in comparison. 

What justifies us in dispensing with the preference 

for inertial systems over all other co-ordinate systems, a 

preference that seems so securely established by experi- 
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ment based upon the principle of inertia ? The weakness 

of the principle of inertia lies in this, that it involves an 

argument in a circle : a mass moves without acceleration 

if it is sufficiently far from other bodies; we know that 

it is sufficiently far from other bodies only by the fact 

that it moves without acceleratioa Are there, in general, 

any inertial systems for very extended portions of the 

space-time continuum, or, indeed, for the whole universe? 

We may look upon the principle of inertia as established, 

to a high degree of approximation, for the space of our 

planetary system, provided that we neglect the perturba¬ 

tions due to the sun and planets. Stated more exactly, 

there are finite regions, where, with respect to a suitably 

chosen space of reference, material particles move freely 

without acceleration, and in which the laws of the special 

theory of relativity, which have been developed above, 

hold with remarkable accuracy. Such regions we shall 

call “Galilean regions.” We shall proceed from the 

consideration of such regions as a special case of known 

properties. 

The principle of equivalence demands that in dealing 

with Galilean regions we may equally well make use of 

non-inertial systems, that is, such co-ordinate systems as, 

relatively to inertial systems, are not free from accelera¬ 

tion and rotation. If, further, we are going to do away 

completely with the difficult question as to the objective 

reason for the preference of certain systems of co-ordinates, 

then we must allow the use of arbitrarily moving systems 

of co-ordinates. As soon as we make this attempt seriously 

5 
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we come into conflict with that physical interpretation of 

space and time to which we were led by the special theory 

of relativity. For let K' be a system of co-ordinates whose 

/-axis coincides with the -S'-axis of K, and which rotates 

about the latter axis with constant angular velocity. Are 

the configurations of rigid bodies, at rest relatively to K\ 
in accordance with the laws of Euclidean geometry? 

Since K' is not an inertial system, we do not know 

directly the laws of configuration of rigid bodies with 

respect to K', nor the laws of nature, in general. But 

we do know these laws with respect to the inertial system 

K: and we can therefore estimate them with respect to K'. 
Imagine a circle drawn about the origin in the x'y plane 

of K\ and a diameter of this circle. Imagine, further, that 

we have given a large number of rigid rods, all equal to 

each other. We suppose these laid in series along the 

periphery and the diameter of the circle, at rest relatively 

to K'. If U is the number of these rods along the peri¬ 

phery, D the number along the diameter, then, if K does 

not rotate relatively to K, we shall have 

U 
d ~77 • 

But if K rotates we get a different result. Suppose 

that at a definite time t} of K we determine the ends of 

all the rods. With respect to K all the rods upon the 

periphery experience the Lorentz contraction, but the 

rods upon the diameter do not experience this contrac- 
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tion (along their lengths !).* It therefore follows that 

U 
D>lr■ 

It therefore follows that the laws of configuration of 

rigid bodies with respect to K' do not agree with the 

laws of configuration of rigid bodies that are in accord¬ 

ance with Euclidean geometry. If, further, we place two 

similar clocks (rotating withTT), one upon the periphery, 

and the other at the centre of the circle, then, judged 

from Ky the clock on the periphery will go slower than 

the clock at the centre. The same thing must take place, 

judged from K\ if we define time with respect to K' in 

a not wholly unnatural way, that is, in such a way that 

the laws with respect to K' depend explicitly upon the 

time. Space and time, therefore, cannot be defined 

with respect to K' as they were in the special theory of 

relativity with respect to inertial systems. But, accord¬ 

ing to the principle of equivalence, K' is also to be con¬ 

sidered as a system at rest, with respect to which there 

is a gravitational field (field of centrifugal force, and 

force of Coriolis). We therefore arrive at the result: 

the gravitational field influences and even determines the 

metrical laws of the space-time continuum. If the laws 

of configuration of ideal rigid bodies are to be expressed 

geometrically, then in the presence of a gravitational 

field the geometry is not Euclidean. 

* These considerations assume that the behaviour of rods and clocks 
depends only upon velocities, and not upon accelerations, or, at least, that 
the influence of acceleration does not counteract that of velocity. 
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The case that we have been considering is analogous 

to that which is presented in the two-dimensional treat¬ 

ment of surfaces. It is impossible in the latter case 

also, to introduce co-ordinates on a surface (e.g. the 

surface of an ellipsoid) which have a simple metrical 

significance, while on a plane the Cartesian co-ordinates, 

xv x2, signify directly lengths measured by a unit 

measuring rod. Gauss overcame this difficulty, in his 

theory of surfaces, by introducing curvilinear co-ordinates 

which, apart from satisfying conditions of continuity, 

were wholly arbitrary, and afterwards these co-ordinates 

were related to the metrical properties of the surface. 

In an analogous way we shall introduce in the general 

theory of relativity arbitrary co-ordinates, xv x2, xv x^ 

which shall number uniquely the space-time points, so 

that neighbouring events are associated with neighbour¬ 

ing values of the co-ordinates ; otherwise, the choice of 

co-ordinates is arbitrary. We shall be true to the 

principle of relativity in its broadest sense if we give 

such a form to the laws that they are valid in every 

such four-dimensional system of co-ordinates, that is, if 

the equations expressing the laws are co-variant with 

respect to arbitrary transformations. 

The most important point of contact between Gauss’s 

theory of surfaces and the general theory of relativity 

lies in the metrical properties upon which the concepts 

of both theories, in the main, are based. In the case 

of the theory of surfaces, Gauss’s argument is as follows. 

Plane geometry may be based upon the concept of the 

distance ds, between two indefinitely near points. The 
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concept of this distance is physically significant because 

the distance can be measured directly by means of a 

rigid measuring rod. By a suitable choice of Cartesian 

co-ordinates this distance may be expressed by the 

formula ds2 = dx2 + dx22. We may base upon this 

quantity the concepts of the straight line as the geodesic 

(h\ds = o), the interval, the circle, and the angle, upon 

which the Euclidean plane geometry is built. A 

geometry may be developed upon another continuously 

curved surface, if we observe that an infinitesimally 

small portion of the surface may be regarded as plane, 

to within relatively infinitesimal quantities. There are 

Cartesian co-ordinates, Xlt X%t upon such a small 

portion of the surface, and the distance between two 

points, measured by a measuring rod, is given by 

ds1 = dX,2 + dX*. 

If we introduce arbitrary curvilinear co-ordinates, xY, x2, 

on the surface, then dXlt dX2, may be expressed linearly 

in terms of dxlt dx2. Then everywhere upon the sur¬ 

face we have 

ds2 = gndx^ + 2gudx1dx2 + g^dxg 

where gn, g12, g22 are determined by the nature of the 

surface and the choice of co-ordinates ; if these quantities 

are known, then it is also known how networks of rigid 

rods may be laid upon the surface. In other words, the 

geometry of surfaces may be based upon this expression 

for ds2 exactly as plane geometry is based upon the 

corresponding expression. 

There are analogous relations in the four-dimensional 
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space-time continuum of physics. In the immediate 

neighbourhood of an observer, falling freely in a gravi¬ 

tational field, there exists no gravitational field. We 

can therefore always regard an infinitesimally small 

region of the space-time continuum as Galilean. For 

such an infinitely small region there will be an inertial 

system (with the space co-ordinates, Xlt X2, AG, and the 

time co-ordinate A”4) relatively to which we are to regard 

the laws of the special theory of relativity as valid. The 

quantity which is directly measurable by our unit 

measuring rods and clocks, 

dx2 + dXA + dX32 - dX2 

or its negative, 

ds1 = - dX2 - dX2 - dX2 + dX2 . (54) 

is therefore a uniquely determinate invariant for two 

neighbouring events (points in the four-dimensional 

continuum), provided that we use measuring rods that 

are equal to each other when brought together and 

superimposed, and clocks whose rates are the same 

when they are brought together. In this the physical 

assumption is essential that the relative lengths of two 

measuring rods and the relative rates of two clocks are 

independent, in principle, of their previous history. But 

this assumption is certainly warranted by experience; 

if it did not hold there could be no sharp spectral lines ; 

for the single atoms of the same element certainly do 

not have the same history, and it would be absurd to 

suppose any relative difference in the structure of the 



THE GENERAL THEORY 71 

single atoms due to their previous history if the mass 

and frequencies of the single atoms of the same element 

were always the same. 

Space-time regions of finite extent are, in general, 

not Galilean, so that a gravitational field cannot be done 

away with by any choice of co-ordinates in a finite 

region. There is, therefore, no choice of co-ordinates 

for which the metrical relations of the special theory of 

relativity hold in a finite region. But the invariant ds 

always exists for two neighbouring points (events) of 

the continuum. This invariant ds may be expressed in 

arbitrary co-ordinates. If one observes that the local 

dXv may be expressed linearly in terms of the co¬ 

ordinate differentials dx„ ds2 may be expressed in the 

form 
ds1 = g^dx/lXy . . • (55) 

The functions g^v describe, with respect to the arbit¬ 

rarily chosen system of co-ordinates, the metrical rela¬ 

tions of the space-time continuum and also the 

gravitational field. As in the special theory of relativity, 

we have to discriminate between time-like and space¬ 

like line elements in the four-dimensional continuum ; 

owing to the change of sign introduced, time-like 

line elements have a real, space-like line elements an 

imaginary ds. The time-like ds can be measured directly 

by a suitably chosen clock. 

According to what has been said, it is evident that 

the formulation of the general theory of relativity 

assumes a generalization of the theory of invariants and 

the theory of tensors; the question is raised as to the 
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form of the equations which are co-variant with respect 

to arbitrary point transformations. The generalized 

calculus of tensors was developed by mathematicians 

long before the theory of relativity. Riemann first 

extended Gauss’s train of thought to continua of any 

number of dimensions; with prophetic vision he saw 

the physical meaning of this generalization of Euclid’s 

geometry. Then followed the development of the theory 

in the form of the calculus of tensors, particularly by 

Ricci and Levi-Civita. This is the place for a brief 

presentation of the most important mathematical con¬ 

cepts and operations of this calculus of tensors. 

We designate four quantities, which are defined as 

functions of the xv with respect to every system of co¬ 

ordinates, as components, Auy of a contra-variant vector, 

if they transform in a change of co-ordinates as the co¬ 

ordinate differentials dxv. We therefore have 

(W 
A*' = z-^A\ (so 

Besides these contra-variant vectors, there are also co¬ 

variant vectors. If Bv are the components of a co-variant 

vector, these vectors are transformed according to the 

rule 

B\ = (57) 

The definition of a co-variant vector is chosen in such a 

way that a co-variant vector and a contra-variant vector 

together form a scalar according to the scheme, 

<ft = BVAV (summed over the v). 
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Accordingly, 

B\A*' = ^ 
~dx 

BAf* = BnA\ 
p 

In particular, the derivatives of a scalar 6, are com- 

ponents of a co-variant vector, which, with the co-ordinate 

differentials, form the scalar ; we see from this 
tea 

example how natural is the definition of the co-variant 

vectors. 

There are here, also, tensors of any rank, which may 

have co-variant or contra-variant character with respect 

to each index ; as with vectors, the character is desig¬ 

nated by the position of the index. For example, A/ 

denotes a tensor of the second rank, which is co-variant 

with respect to the index /i, and contra-variant with re¬ 

spect to the index v. The tensor character indicates 

that the equation of transformation is 

^ a' 

(58) 

Tensors may be formed by the addition and subtraction 

of tensors of equal rank and like character, as in the 

theory of invariants of orthogonal linear substitutions, for 

example, 

a; + b;= q. . . . (59) 

The proof of the tensor character of C* depends upon (58). 

Tensors may be formed by multiplication, keeping the 

character of the indices, just as in the theory of invariants 

of linear orthogonal transformations, for example, 

. (60) rv 
'■''/ACTT* 
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The proof follows directly from the rule of transforma¬ 

tion. 

Tensors may be formed by contraction with respect to 

two indices of different character, for example, 

A%t = BaT. . . . (61) 

The tensor character of A£ar determines the tensor 

character of BaT. Proof— 

_ 3*. 3£V Lrs ~dXt 

~dx'a dx'T 
a 
ast• 

The properties of symmetry and skew-symmetry of a 

tensor with respect to two indices of like character have 

the same significance as in the theory of invariants. 

With this, everything essential has been said with 

regard to the algebraic properties of tensors. 

The Fundamental Tensor. It follows from the invari¬ 

ance of ds2 for an arbitrary choice of the dxv, in connexion 

with the condition of symmetry consistent with (55), that 

the g^v are components of a symmetrical co-variant tensor 

(Fundamental Tensor). Let us form the determinant, 

g, of the g^vi and also the minors, divided by g, cor¬ 

responding to the single g^. These minors, divided by 

g} will be denoted by gand their co-variant character 

is not yet known. Then we have 

O' <rtf = = 1 Ur a 7 ^ 
a O if a ft 

(62) 

If we form the infinitely small quantities (co-variant 

vectors) 

— g^oF^o. • • • (^3) 



THE GENERAL THEORY 75 

multiply by g'x& and sum over the //,, we obtain, by the 

use of (62), 

dxi = g^d^. . . ■ (64) 

Since the ratios of the d^ are arbitrary, and the dx$ as 

well as the dx^ are components of vectors, it follows that 

the g*v are the components of a contra-variant tensor * 

(contra-variant fundamental tensor). The tensor character 

of Sf (mixed fundamental tensor) accordingly follows, 

by (62). By means of the fundamental tensor, instead 

of tensors with co-variant index character, we can 

introduce tensors with contra-variant index character, 

and conversely. For example, 

= g»*Aa 

A = 
Ta = . 

fJ- 5 fj-v 

Volume Invariants. The volume element 

S dxYdx.L dxzdxA = dx 

is not an invariant. For by Jacobi’s theorem, 

dx = 
dx’* 
dx. 

dx. (65) 

& 

* If we multiply (64) by , sum over the £, and replace the dj-n by a 

transformation to the accented system, we obtain 

dx'a 
dx'q- 'dx'a 

dx^ dxp 
g^civ <T• 

The statement made above follows from this, since, by (64), we must also 

have dx'a = g^'d}-'a, and both equations must hold for every choice of the 
d£'cr. 
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But we can complement dx so that it becomes an in¬ 

variant. If we form the determinant of the quantities 

, ^xa Dx,, 

~ ix'^ 7>x'g^ 

we obtain, by a double application of the theorem of 

multiplication of determinants, 

O' a cr 
<b MV 

We therefore get the invariant, 

Jgdx = Jgdx. 

Formation of Te?isors by Differentiation. Although 

the algebraic operations of tensor formation have proved 

to be as simple as in the special case of invariance with 

respect to linear orthogonal transformations, nevertheless 

in the general case, the invariant differential operations 

are, unfortunately, considerably more complicated. The 

reason for this is as follows. If A* is a contra-variant 

vector, the coefficients of its transformation, are in- 
Dxv 

dependent of position only if the transformation is a linear 

DA* 
one. For then the vector components, A* + ——dxa, at 

oXa 

a neighbouring point transform in the same way as the 

A*, from which follows the vector character of the vector 

differentials, and the tensor character of 
DA* 

Dxf 

Dxv 
are variable this is no longer true. 

But if the 
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That there are, nevertheless, in the general case, in¬ 

variant differential operations for tensors, is recognized 

most satisfactorily in the following way, introduced by 

Levi-Civita and Weyl. Let (A*) be a contra-variant vector 

whose components are given with respect to the co¬ 

ordinate system of the xv. Let P1 and P2 be two in¬ 

finitesimally near points of the continuum. For the 

infinitesimal region surrounding the point Pv there is, 

according to our way of considering the matter, a co¬ 

ordinate system of the Xv (with imaginary ^-co¬ 

ordinates) for which the continuum is Euclidean. Let 

Afx) be the co-ordinates of the vector at the point Pv 

Imagine a vector drawn at the point Pv using the local 

system of the Xv, with the same co-ordinates (parallel 

vector through P^)} then this parallel vector is uniquely 

determined by the vector at P1 and the displacement. 

We designate this operation, whose uniqueness will appear 

in the sequel, the parallel displacement of the vector An 

from P1 to the infinitesimally near point P2 If we form 

the vector difference of the vector (A*) at the point P2 

and the vector obtained by parallel displacement from Px 

to P2, we get a vector which may be regarded as the 

differential of the vector (Afor the given displacement 

(dx,). 

This vector displacement can naturally also be con¬ 

sidered with respect to the co-ordinate system of the xv. 

If Av are the co-ordinates of the vector at Plf Av + &AV 

the co-ordinates of the vector displaced to P2 along the 

interval (dxv), then the SAU do not vanish in this case. 

We know of these quantities, which do not have a vector 
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character, that they must depend linearly and homo¬ 

geneously upon the dxv and the Av. We therefore put 

SAV = - T^A'dxp . . (67) 

In addition, we can state that the Tvap must be sym¬ 

metrical with respect to the indices a and {3. For we 

can assume from a representation by the aid of a Euclid¬ 

ean system of local co-ordinates that the same parallelo¬ 

gram will be described by the displacement of an element 

d[1)xv along a second element d^xv as by a displacement 

of d^xv along d^xv. We must therefore have 

d^\xv + (d[X)xv - T^K^Xp) 

= d{1)xv + (d[~)xv - V^xj^xp). 

The statement made above follows from this, after inter¬ 

changing the indices of summation, a and /3, on the 

right-hand side. 

Since the quantities g^v determine all the metrical 

properties of the continuum, they must also determine 

the T^. If we consider the invariant of the vector Av, 

that is, the square of its magnitude, 

g^A” 

which is an invariant, this cannot change in a parallel 

displacement. We therefore have 

o = S(g^A»A') = jgA*A"dxa + g^A^SA* + g^ASA* 

or, by (67), 

- g^ri ~ g^K)^A”dxa = o. 
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Owing to the symmetry of the expression in the 

brackets with respect to the indices and v, this equation 

can be valid for an arbitrary choice of the vectors (Aa) 

and dxv only when the expression in the brackets vanishes 

for all combinations of the indices. By a cyclic inter¬ 

change of the indices fi, v, a, we obtain thus altogether 

three equations, from which we obtain, on taking into 

account the symmetrical property of the 

• • • (68) 

in which, following Christoffel, the abbreviation has been 

used, 

If we multiply (68) by gacr and sum over the a, we 

obtain 

(70) 

in which {'7} is the Christoffel symbol of the second 

kind. Thus the quantities T are deduced from the g^v. 

Equations (67) and (70) are the foundation for the 

following discussion. 

Co-variant Differentiation of Tensors. If (A11 + SAf is 

the vector resulting from an infinitesimal parallel displace¬ 

ment from P1 to P2, and (A“ + dAthe vector A* at the 

point P2l then the difference of these two, 

dA* - 8A* = + Y^A^dX" 
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is also a vector. Since this is the case for an arbitrary 

choice of the dxvi it follows that 

A<7 
'dAfX 

(71) 

is a tensor, which we designate as the co-variant derivative 

of the tensor of the first rank (vector). Contracting this 

tensor, we obtain the divergence of the contra-variant 

tensor A\ In this we must observe that according to 

(70), 

If we put, further, 

() gr 
_ JL rr<ra <7> (Ta 

2a 

JL h/A 
*Jg 

A* Jg = B* 

(72) 

(73) 

a quantity designated by Weyl as the contra-variant tensor 

density * of the first rank, it follows that, 

^ 

is a scalar density. 

We get the law of parallel displacement for the 

co-variant vector Z? by stipulating that the parallel 

displacement shall be effected in such a way that the 

scalar 

cf) = A^B^ 
remains unchanged, and that therefore 

Ar-ZBp + 

*This expression is justified, in that Av-Jgdx = 21 ^dx has a tensor 

character. Every tensor, when multiplied by Jg, changes into a tensor 

density. We employ capital Gothic letters for tensor densities. 
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vanishes for every value assigned to (A"-). We therefore 

get 

BBP = ri„AJx„. . . . (75) 

From this we arrive at the co-variant derivative of the 

co-variant vector by the same process as that which led 

to (71), 

bp, <T - ¥?* - r%bv . . (76) 
ox9 

By interchanging the indices ^ and a, and subtracting, 

we get the skew-symmetrical tensor, 

tea 

te>a 
te^ 

(77) 

For the co-variant differentiation of tensors of the 

second and higher ranks we may use the process by 

which (75) was deduced. Let, for example, (Aar) be a 

co-variant tensor of the second rank. Then A^E^F7 is 

a scalar, if E and F are vectors. This expression must 

not be changed by the 8-displacement; expressing this 

by a formula, we get, using (67), SAaT, whence we get the 

desired co-variant derivative, 

A 
'bA CTT 

or; p 
ten 

_ r,a A — Pa A 
A (Tp**-1 aT A Tp era• • (78) 

In order that the general law of co-variant differ¬ 

entiation of tensors may be clearly seen, we shall write 

down two co-variant derivatives deduced in an analogous 

way: 

Al.a ... aA; 
a, p 

tep 

a*: 
'dA(TT 

. p 

- ra AT + TT Aa 
A apxxa * A apx±(T 

+ + F'pA™. 

(79) 

(So) 

6 



82 THE MEANING OF RELATIVITY 

The general law of formation now becomes evident. 

From these formulae we shall deduce some others which 

are of interest for the physical applications of the theory. 

In case Aar is skew-symmetrical, we obtain the tensor 

A arp 

+ 3^ + 3 AfT 

~bxp ~bx, ixT 
(81) 

which is skew-symmetrical in all pairs of indices, by cyclic 

interchange and addition. 

If, in (78), we replace Aar by the fundamental tensor* 

gaT, then the right-hand side vanishes identically ; an 

analogous statement holds for (80) with respect to gaT; 

that is, the co-variant derivatives of the fundamental 

tensor vanish. That this must be so we see directly in 

the local system of co-ordinates. 

In case AaT is skew-symmetrical, we obtain from (80), 

by contraction with respect to t and p, 

(82) 

In the general case, from (79) and (80), by contraction 

with respect to t and p, we obtain the equations, 

= Tiffri. . . (83) 
dXa 

a- = ^ . . (84) 

The Riemann Tensor. If we have given a curve ex¬ 

tending from the point P to the point G of the continuum, 

then a vector A*, given at P, may, by a parallel displace¬ 

ment, be moved along the curve to G. If the continuum 
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is Euclidean (more generally, if by a suitable choice of 

co-ordinates the^v are constants) then the vector obtained 

at G as a result of this displacement does not depend 

upon the choice of the curve joining P and G. But 

otherwise, the result depends upon the path of the dis¬ 

placement. In this case, therefore, a vector suffers a 

change, AA* (in its direction, not its magnitude), when it 

is carried from a point P of a closed curve, along the 

Q 

curve, and back to P. We shall now calculate this vector 

change: 

A A* = 

As in Stokes’ theorem for the line integral of a vector 

around a closed curve, this problem may be reduced to 

the integration around a closed curve with infinitely small 

linear dimensions; we shall limit ourselves to this case. 
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We have, first, by (67), 

A A* = 
/» 

T%Aad*p 
a 
0 

In this, Tjjg is the value of this quantity at the variable 

point G of the path of integration. If vve put 

Z!L ~ (xv)g ~ (xv)p 

and denote the value of Y^p at P by T^, then we have, 

with sufficient accuracy, 

- 7nTva 
"PM _ pM 1 UJ- 

L<* “ ^ + ■ 

Let, further, Aa be the value obtained from Aa by a 

parallel displacement along the curve from P to G. It 

may now easily be proved by means of (67) that AM - A* 

is infinitely small of the first order, while, for a curve of 

infinitely small dimensions of the first order, AA* is 

infinitely small of the second order. Therefore there is 

an error of only the second order if we put 

Aa = ~A* - flTA~aF- 

If we introduce these values of Y^p and Aa into the 

integral, we obtain, neglecting all quantities of a higher 

order of small quantities than the second, 

a a* = - gy - . (85) 
0 

The quantity removed from under the sign of integration 
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refers to the point P. Subtracting from the 

integrand, we obtain 

o 

This skew-symmetrical tensor of the second rank, faPi 

characterizes the surface element bounded by the curve 

in magnitude and position. If the expression in the 

brackets in (85) were skew-symmetrical with respect to 

the indices a and ft, we could conclude its tensor char¬ 

acter from (85). We can accomplish this by interchanging 

the summation indices a and ft in (85) and adding the 

resulting equation to (85). We obtain 

2AA* = - R\*TmfiA*f+ . . (86) 

in which 

ra > 
+ W, - r&rk (87) 

The tensor character of follows from (86); this is 

the Riemann curvature tensor of the fourth rank, whose 

properties of symmetry we do not need to go into. Its 

vanishing is a sufficient condition (disregarding the reality 

of the chosen co-ordinates) that the continuum is 

Euclidean. 

By contraction of the Riemann tensor with respect to 

the indices fi, ft, we obtain the symmetrical tensor of the 

second rank, 

= 

ar;„ 
+ r^r? va + 

ar;„ pa p/3 
A 1aj3‘ (88) 

The last two terms vanish if the system of co-ordinates 
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is so chosen that^ = constant. From R^v we can form 

the scalar, 

R = • • • (89) 
Straightest (Geodetic) Lines. A line may be constructed 

in such a way that its successive elements arise from each 

other by parallel displacements. This is the natural 

generalization of the straight line of the Euclidean 

geometry. For such a line, we have 

The left-hand side is to be replaced by 
ds1’ 

so that we 

have 

+ 
dxa dxp 

ds ds 
o. (90) 

We get the same line if we find the line which gives a 

stationary value to the integral 

[ds or L/. g^dx^dx. 

between two points (geodetic line). 

* The direction vector at a neighbouring point of the curve results, by a 

parallel displacement along the line element (<^^), from the direction vector 

of each point considered. 



LECTURE IV 

THE GENERAL THEORY OF RELATIVITY 

(Continued) 

WE are now in possession of the mathematical 

apparatus which is necessary to formulate the 

laws of the general theory of relativity. No attempt 

will be made in this presentation at systematic complete¬ 

ness, but single results and possibilities will be devel¬ 

oped progressively from what is known and from the 

results obtained. Such a presentation is most suited 

to the present provisional state of our knowledge. 

A material particle upon which no force acts moves, 

according to the principle of inertia, uniformly in a 

straight line. In the four-dimensional continuum of the 

special theory of relativity (with real time co-ordinate) 

this is a real straight line. The natural, that is, the 

simplest, generalization of the straight line which is 

plausible in the system of concepts of Riemann’s general 

theory of invariants is that of the straightest, or geodetic, 

line. We shall accordingly have to assume, in the sense 

of the principle of equivalence, that the motion of a 

material particle, under the action only of inertia and 

gravitation, is described by the equation, 

ds2 

dxadx{3 

+ l^ds ds 

87 
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In fact, this equation reduces to that of a straight line 

if all the components, of the gravitational field 

vanish. 

How are these equations connected with Newton’s 

equations of motion? According to the special theory 

of relativity, the g^v as well as the g^v, have the values, 

with respect to an inertial system (with real time co¬ 

ordinate and suitable choice of the sign of ds2), 

- i o o 
o-i o 
o o - i 

ooo 

o 
o 
o 
i 

• (91) 

The equations of motion then become 

ds2 
= o. 

We shall call this the “ first approximation ” to the g!XV- 

field. In considering approximations it is often useful, 

as in the special theory of relativity, to use an imaginary 

^-co-ordinate, as then the gfJLV, to the first approxima¬ 

tion, assume the values 

(91a) 

These values may be collected in the relation 

cr — — $ 
& fj-v '-'txv' 

To the second approximation we must then put 

S>y,v — “b ’ (92) 
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where the y^v are to be regarded as small of the first 

order. 

Both terms of our equation of motion are then small 

of the first order. If we neglect terms which, relatively 

to these, are small of the first order, we have to put 

1 /dyaj8 
2 \ 'bxtL 

We shall now introduce an approximation of a second 

kind. Let the velocity of the material particles be very 

small compared to that of light. Then ds will be the 

dxx dx^ dx3 
same as the time differential, dl. Further, 

will vanish compared to We shall assume, in addi¬ 

tion, that the gravitational field varies so little with the 

time that the derivatives of the y^v by xi may be 

neglected. Then the equation of motion (for fi= I, 2, 3) 

reduces to 

d2x, 
V- 

dl1 Lr^\ 2 / 
(90a) 

This equation is identical with Newton’s equation of 

motion for a material particle in a gravitational field, if 

we identify with the potential of the gravitational 

field ; whether or not this is allowable, naturally depends 

upon the field equations of gravitation, that is, it de¬ 

pends upon whether or not this quantity satisfies, to a 

first approximation, the same laws of the field as the 
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gravitational potential in Newton’s theory. A glance 

at (90) and (90a) shows that the Tjh actually do play 

the role of the intensity of the gravitational field. 

These quantities do not have a tensor character. 

Equations (90) express the influence of inertia and 

gravitation upon the material particle. The unity of 

inertia and gravitation is formally expressed by the fact 

that the whole left-hand side of (90) has the character 

of a tensor (with respect to any transformation of co¬ 

ordinates), but the two terms taken separately do not 

have tensor character, so that, in analogy with Newton’s 

equations, the first term would be regarded as the ex¬ 

pression for inertia, and the second as the expression 

for the gravitational force. 

We must next attempt to find the laws of the gravita¬ 

tional field. For this purpose, Poisson’s equation, 

A<£ = \irKp 

of the Newtonian theory must serve as a model. This 

equation has its foundation in the idea that the gravi¬ 

tational field arises from the density p of ponderable 

matter. It must also be so in the general theory of 

relativity. But our investigations of the special theory 

of relativity have shown that in place of the scalar 

density of matter we have the tensor of energy per unit 

volume. In the latter is included not only the tensor 

of the energy of ponderable matter, but also that of the 

electromagnetic energy. We have seen, indeed, that 

in a more complete analysis the energy tensor can be 

regarded only as a provisional means of representing 
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matter. In reality, matter consists of electrically charged 

particles, and is to be regarded itself as a part, in fact, 

the principal part, of the electromagnetic field. It is 

only the circumstance that we have not sufficient know¬ 

ledge of the electromagnetic field of concentrated charges 

that compels us, provisionally, to leave undetermined 

in presenting the theory, the true form of this tensor. 

From this point of view our problem now is to introduce 

a tensor, T^, of the second rank, whose structure we do 

not know provisionally, and which includes in itself the 

energy density of the electromagnetic field and of ponder¬ 

able matter; we shall denote this in the following as 

the “ energy tensor of matter.” 

According to our previous results, the principles of 

momentum and energy are expressed by the statement 

that the divergence of this tensor vanishes (47c). In 

the general theory of relativity, we shall have to assume 

as valid the corresponding general co-variant equation. 

If (T^v) denotes the co-variant energy tensor of matter, 

XKJ. the corresponding mixed tensor density, then, in 

accordance with (83), we must require that 

o = (95) 

be satisfied. It must be remembered that besides the 

energy density of the matter there must also be given 

an energy density of the gravitational field, so that there 

can be no talk of principles of conservation of energy 

and momentum for matter alone. This is expressed 

mathematically by the presence of the second term in 
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(95), which makes it impossible to conclude the existence 

of an integral equation of the form of (49). The gravi¬ 

tational field transfers energy and momentum to the 

“matter,” in that it exerts forces upon it and gives it 

energy; this is expressed by the second term in (95). 

If there is an analogue of Poisson’s equation in the 

general theory of relativity, then this equation must be 

a tensor equation for the tensor g^v of the gravitational 

potential; the energy tensor of matter must appear on 

the right-hand side of this equation. On the left-hand 

side of the equation there must be a differential tensor 

in the g^v. We have to find this differential tensor. 

It is completely determined by the following three 

conditions:— 

1. It may contain no differential coefficients of the^ 

higher than the second. 

2. It must be linear and homogeneous in these second 

differential coefficients. 

3. Its divergence must vanish identically. 

The first two of these conditions are naturally taken 

from Poisson’s equation. Since it may be proved 

mathematically that all such differential tensors can be 

formed algebraically (i.e. without differentiation) from 

Riemann’s tensor, our tensor must be of the form 

Kv + 

in which R^v and R are defined by (88) and (89) respec¬ 

tively. Further, it may be proved that the third condi¬ 

tion requires a to have the value - For the law 
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of the gravitational field we therefore get the equa¬ 

tion 

Equation (95) is a consequence of this equation, tc de¬ 

notes a constant, which is connected with the Newtonian 

gravitation constant. 

In the following I shall indicate the features of the 

theory which are interesting from the point of view of 

physics, using as little as possible of the rather involved 

mathematical method. It must first be shown that the 

divergence of the left-hand side actually vanishes. The 

energy principle for matter may be expressed, by (83), 

0 - £ - 

in which Z", = - S- 

(97) 

The analogous operation, applied to the left-hand side 

of (96), will lead to an identity. 

In the region surrounding each world-point there are 

systems of co-ordinates for which, choosing the ^^-co¬ 

ordinate imaginary, at the given point, 

- g* = _ = o if ^ ={= V) 

and for which the first derivatives of the g^v and the 

g*v vanish. We shall verify the vanishing of the diverg¬ 

ence of the left-hand side at this point. At this point 

the components T^a vanish, so that we have to prove 

the vanishing only of 
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Introducing (88) and (70) into this expression, we see 

that the only terms that remain are those in which third 

derivatives of the g^v enter. Since the g are to be 

replaced by - we obtain, finally, only a few terms 

which may easily be seen to cancel each other. Since 

the quantity that we have formed has a tensor character, 

its vanishing is proved for every other system of co-ordin¬ 

ates also, and naturally for every other four-dimensional 

point. The energy principle of matter (97) is thus a 

mathematical consequence of the field equations (96). 

In order to learn whether the equations (96) are 

consistent with experience, we must, above all else, find 

out whether they lead to the Newtonian theory as a 

first approximation. For this purpose we must intro¬ 

duce various approximations into these equations. We 

already know that Euclidean geometry and the law of the 

constancy of the velocity of light are valid, to a certain 

approximation, in regions of a great extent, as in the 

planetary system. If, as in the special theory of rela¬ 

tivity, we take the fourth co-ordinate imaginary, this 

means that we must put 

~ ~~ y^v • • • (9^) 

in which the y^v are so small compared to 1 that we 

can neglect the higher powers of the y^ and their 

derivatives. If we do this, we learn nothing about the 

structure of the gravitational field, or of metrical space of 

cosmical dimensions, but we do learn about the influence 

of neighbouring masses upon physical phenomena. 

Before carrying through this approximation we shall 
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transform (96). We multiply (96) by g*v, summed over 

the fi and v; observing the relation which follows from 

the definition of the g^, 

= 4 
we obtain the equation 

R = /cgllvTflv = kT. 

If we put this value of R in (96) we obtain 

= - k{T^ - = - tcTl,. . (96a) 

When the approximation which has been mentioned is 

carried out, we obtain for the left-hand side, 

+ 'dxy^xv dxyZxa ^xg)xj 

or 

l3^- , 3 ■ 3 va\ 

7 ix* 5.ra / 2 J.ra / 

in which has been put 

y h-v ~ y^v ~ \y• • (99) 

We must now note that equation (96) is valid for any 

system of co-ordinates. We have already specialized the 

system of co-ordinates in that we have chosen it so that 

within the region considered the g^v differ infinitely little 

from the constant values - 8^. But this condition 

remains satisfied in any infinitesimal change of co¬ 

ordinates, so that there are still four conditions to which 

the may be subjected, provided these conditions do 

not conflict with the conditions for the order of magnitude 
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of the y^. We shall now assume that the system of co¬ 

ordinates is so chosen that the four relations— 

_ l-i-v   ~^y iav i^ycrcr 

~ ~dXv “ 1xv 2 IXp. 

are satisfied. Then (96a) takes the form 

= 2*t% . . . (96b) 

These equations may be solved by the method, familiar 

in electrodynamics, of retarded potentials; we get, in an 

easily understood notation, 

y ixv 
f 9V f ~ r)JV 

27rJ r " ( (101) 

In order to see in what sense this theory contains the 

Newtonian theory, we must consider in greater detail 

the energy tensor of matter. Considered phenomeno¬ 

logically, this energy tensor is composed of that of the 

electromagnetic field and of matter in the narrower sense. 

If we consider the different parts of this energy tensor 

with respect to their order of magnitude, it follows 

from the results of the special theory of relativity that 

the contribution of the electromagnetic field practically 

vanishes in comparison to that of ponderable matter. In 

our system of units, the energy of one gram of matter is 

equal to I, compared to which the energy of the electric 

fields may be ignored, and also the energy of deformation 

of matter, and even the chemical energy. We get an 

approximation that is fully sufficient for our purpose if 
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we put 

dx„ dxv 1 

^ ■*[ 
ds2 = g^dxjx J 

In this, <j is the density at rest, that is, the density of the 

ponderable matter, in the ordinary sense, measured with 

the aid of a unit measuring rod, and referred to a Galilean 

system of co-ordinates moving with the matter. 

We observe, further, that in the co-ordinates we have 

chosen, we shall make only a relatively small error if we 

replace the g^v by - 8^, so that we put 

ds2 = - ^dx2. . . (102a) 

The previous developments are valid however rapidly 

the masses which generate the field may move relatively 

to our chosen system of quasi-Galilean co-ordinates. But 

in astronomy we have to do with masses whose velocities, 

relatively to the co-ordinate system employed, are always 

small compared to the velocity of light, that is, small 

compared to i, with our choice of the unit of time. 

We therefore get an approximation which is sufficient 

for nearly all practical purposes if in (ioi) we replace 

the retarded potential by the ordinary (non-retarded) 

potential, and if, for the masses which generate the field, 

we put 

_ dx.j, dx3 dx± ./ — \dl - 

ds ds ~ ds ~ |ds ~ = ^ ~ I’ (I03a) 

7 
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Then we get for and Tnv the values 

o 
o 
o 
o 

o o 
o o 
o o 
o o 

o 
o 
o 
<J 

l 

I 

(104) 

For T we get the value cr, and, finally, for T*„ the 

values, 
a 

2 

o 

o 

o 

<7 

2 

O 

o o 

We thus get, from (101), 

7ll = 722 = 733 = 

o 

o 

cr 

2 

O - 

O 

O 

O 

o I 

2J 

744 = + 

K 'odVQ\ 

47T. r 

K m<rdV0 
477. 

r J 

(104a) 

(101a) 

while all the other y^v vanish. The least of these equa¬ 

tions, in connexion with equation (90a), contains New¬ 

ton’s theory of gravitation. If we replace / by ct we 

get 
drx kc2 7) ffodV0[ 

~df ~ J 

We see that the Newtonian gravitation constant W, is 

connected with the constant tc that enters into our field 

equations by the relation 

K = 

fCC1 

877' 
(105) 
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From the known numerical value of K, it therefore 

follows that 

k = 

877K 877.6-67 . 10 -8 

r 9 . 10 20 
1 -86 . 1 o~27. (105a) 

From (101) we see that even in the first approximation 

the structure of the gravitational field differs fundamentally 

from that which is consistent with the Newtonian theory ; 

this difference lies in the fact that the gravitational 

potential has the character of a tensor and not a scalar. 

This was not recognized in the past because only the 

component g44, to a first approximation, enters the equa¬ 

tions of motion of material particles. 

In order now to be able to judge the behaviour of 

measuring rods and clocks from our results, we must 

observe the following. According to the principle of 

equivalence, the metrical relations of the Euclidean 

geometry are valid relatively to a Cartesian system of 

reference of infinitely small dimensions, and in a suitable 

state of motion (freely failing, and without rotation). 

We can make the same statement for local systems of 

co-ordinates which, relatively to these, have small ac¬ 

celerations, and therefore for such systems of co-ordinates 

as are at rest relatively to the one we have selected. For 

such a local system, we have, for two neighbouring point 

events, 

ds2 = - dX2 - dX2 - dX2 + dT2 = - dS2 + dT2 

where dS is measured directly by a measuring rod and 

dT by a clock at rest relatively to the system : these are 
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the naturally measured lengths and times. Since ds\ on 

the other hand, is known in terms of the co-ordinates xv 

employed in finite regions, in the form 

ds- = g^dx^dx. 

we have the possibility of getting the relation between 

naturally measured lengths and times, on the one hand, 

and the corresponding differences of co-ordinates, on the 

other hand. As the division into space and time is in 

agreement with respect to the two systems of co-ordinates, 

so when we equate the two expressions for ds2 we get 

two relations. If, by (ioia), we put 

we obtain, to a sufficiently close approximation, 

(i°6) 

The unit measuring rod has therefore the length, 

in respect to the system of co-ordinates we have selected. 

The particular system of co-ordinates we have selected 
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insures that this length shall depend only upon 

the place, and not upon the direction. If we had 

chosen a different system of co-ordinates this would not 

be so. But however we may choose a system of co¬ 

ordinates, the laws of configuration of rigid rods do not 

agree with those of Euclidean geometry ; in other words, 

we cannot choose any system of co-ordinates so that the 

co-ordinate differences, Axl} Ax2, Axs, corresponding to the 

ends of a unit measuring rod, oriented in any way, shall 

always satisfy the relation Ax} + Ax} + Ax-} = i. In 

this sense space is not Euclidean, but “ curved.” It 

follows from the second of the relations above that the 

interval between two beats of the unit clock (dT = i) 

corresponds to the “ time ” 

in the unit used in our system of co-ordinates. The rate 

of a clock is accordingly slower the greater is the mass of 

the ponderable matter in its neighbourhood. We there¬ 

fore conclude that spectral lines which are produced on 

the sun’s surface will be displaced towards the red, 

compared to the corresponding lines produced on the 

earth, by about 2. io~° of their wave-lengths. At first, 

this important consequence of the theory appeared to 

conflict with experiment; but results obtained during the 

past year seem to make the existence of this effect more 

probable, and it can hardly be doubted that this con¬ 

sequence of the theory will be confirmed within the next 

year. 
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Another important consequence of the theory, which 

can be tested experimentally, has to do with the path of 

rays of light. In the general theory of relativity also 

the velocity of light is everywhere the same, relatively to 

a local inertial system. This velocity is unity in our 

natural measure of time. The law of the propagation of 

light in general co-ordinates is therefore, according to the 

general theory of relativity, characterized, by the equation 

ds2 = o. 

To within the approximation which we are using, and in 

the system of co-ordinates which we have selected, the 

velocity of light is characterized, according to (106), by 

the equation 

( I + q* dx<£ q- dxd 

The velocity of light A, is therefore expressed in our 

co-ordinates by 

v/ dx2 q- dx2 q- dx2 
~dl 

k [crdVr, , v 

— —-*• (I07) 47tJ r 

We can therefore draw the conclusion from this, that a 

ray of light passing near a large mass is deflected. If 

we imagine the sun, of mass M, concentrated at the 

origin of our system of co-ordinates, then a ray of light, 

travelling parallel to the ^3-axis, in the x1 - xs plane, 

at a distance A from the origin, will be deflected, in all, 

by an amount 
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+ » 
f1 , 

a = — —ax^ 
JL dxx 

towards the sun. On performing the integration we get 

kM 
a 

27tA 
(ioS) 

The existence of this deflection, which amounts to 

i 7" for A equal to the radius of the sun, was confirmed, 

with remarkable accuracy, by the English Solar Eclipse 

. Expedition in 1919, and most careful preparations have 

been made to get more exact observational data at the 

solar eclipse in 1922. It should be noted that this 

result, also, of the theory is not influenced by our 

arbitrary choice of a system of co-ordinates. 

This is the place to speak of the third consequence of 

the theory which can be tested by observation, namely, 

that which concerns the motion of the perihelion 

of the planet Mercury. The secular changes in the 

planetary orbits are known with such accuracy that the 

approximation we have been using is no longer sufficient 

for a comparison of theory and observation. It is neces¬ 

sary to go back to the general field equations (96). To 

solve this problem I made use of the method of succes¬ 

sive approximations. Since then, however, the problem 

of the central symmetrical statical gravitational field has 

been completely solved by Schwarzschild and others; 

the derivation given by H. Weyl in his book, “ Raum- 

Zeit-Materie,” is particularly elegant. The calculation 

can be simplified somewhat if we do not go back directly 
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to the equation (96), but base it upon a principle of 

variation that is equivalent to this equation. I shall 

indicate the procedure only in so far as is necessary for 

understanding the method. 

In the case of a statical field, ds2 must have the form 

1ds2 = - dcr2 + f2dx± 

da- = ^Yapdxjxp 

1-3 

where the summation on the right-hand side of the last 

equation is to be extended over the space variables only, 

The central symmetry of the field requires the y^v to be 

of the form, 

Ya£ = /^a/3 + '^X0X)3 * * (1 1 °) 

f 2, n and \ are functions of r — ^/x2 + x£ + xz2 only. 

One of these three functions can be chosen arbitrarily, 

because our system of co-ordinates is, a priori, completely 

arbitrary ; for by a substitution 

^4 = *4 

V« = F(r)xa 

we can always insure that one of these three functions 

shall be an assigned function of r. In place of (i io) we 

can therefore put, without limiting the generality, 

7a£ = ^ a 8 + . . (uoa) 

In this way the g^v are expressed in terms of the two 

quantities \ and f. These are to be determined as func¬ 

tions of r, by introducing them into equation (96), after 
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first calculating the from (107) and (108a). We 

have 

-L afi 

r4 144 

r4 1 4a 

+ 2\r8ap 
— u r I+^r-^(fora,A^ = 1,2,3) 

r“3 = = o (for a, /3 = I, 2, 3) 

-2y2 
— if = - */ 

-2¥! 

(108b) 

With the help of these results, the field equations 

furnish Schwarzschild’s solution : 

ds2 = 
“ dr2 

A 
1- 

r 

4- r2(sin2 0dcf)2 + d02) 

in which we have put 

(109) 

xA = l 
4 

xY = r sin 6 sin (p 

x.2 = r sin 0 cos </> 

xz = r cos 0 

A = 
kM 

47r 

(109a) 

M denotes the sun’s mass, centrally symmetrically 

placed about the origin of co-ordinates ; the solution (109) 

is valid only outside of this mass, where all the T^v vanish. 

If the motion of the planet takes place in the x1 - x.2 

plane then we must replace (109) by 

/ A \ dv2 
ds2 — [1 - -yjdl2 - -^ - r2d(p2 . (109b) 

1 - — 
r 
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The calculation of the planetary motion depends upon 

equation (90). From the first of equations (108b) and 

(90) we get, for the indices 1, 2, 3, 

d ( dxp dx \ 

ds\X*ds ~ x*ds) ~° 

or, if we integrate, and express the result in polar co¬ 

ordinates, 

d(p 
r= constant. (no 

From (90), for jj, = 4, we get 

dr l I df2 dxa dr l I df~ 

0 ds2 + f'1 dxa ds ~ ds2 + f2 ds' 

From this, after multiplication by/2 and integration, we 

have 

= constant. (112) 

In (109b), (ill) and (112) we have three equations 

between the four variables j, r, / and </>, from which the 

motion of the planet may be calculated in the same way 

as in classical mechanics. The most important result we 

get from this is a secular rotation of the elliptic orbit of 

the planet in the same sense as the revolution of the 

planet, amounting in radians per revolution to 
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where 

a = the semi-major axis of the planetary orbit in 

centimetres. 

e = the numerical eccentricity. 

c = 3 . io+10, the velocity of light in vacuo. 

T = the period of revolution in seconds. 

This expression furnishes the explanation of the motion 

of the perihelion of the planet Mercury, which has been 

known for a hundred years (since Leverrier), and for 

which theoretical astronomy has hitherto been unable 

satisfactorily to account. 

There is no difficulty in expressing Maxwell’s theory 

of the electromagnetic field in terms of the general theory 

of relativity; this is done by application of the tensor 

formation (81), (82) and (77). Let (p^ be a tensor of the 

first rank, to be denoted as an electromagnetic 4-potential; 

then an electromagnetic field tensor may be defined by 

the relations, 

^<j>u 

He’ 
(”4) 

The second of Maxwell’s systems of equations is then 

defined by the tensor equation, resulting from this, 

T>x, (114a) 

and the first of Maxwell’s systems of equations is defined 

by the tensor-density relation 
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in which 

fl*” = V - gg^g1^ 

J s SPds■ 

(XT 

If we introduce the energy tensor of the electromagnetic 

field into the right-hand side of (96), we obtain (115), 

for the special case 3^ = o, as a consequence of (96) by 

taking the divergence. This inclusion of the theory of 

electricity in the scheme of the general theory of relativity 

has been considered arbitrary and unsatisfactory by 

many theoreticians. Nor can we in this way conceive of 

the equilibrium of the electricity which constitutes the 

elementary electrically charged particles. A theory in 

which the gravitational field and the electromagnetic field 

enter as an essential entity would be much preferable. 

H. Weyl, and recently Th. Kaluza, have discovered some 

ingenious theorems along this direction; but concerning 

them, I am convinced that they do not bring us nearer to 

the true solution of the fundamental problem. I shall 

not go into this further, but shall give a brief discussion 

of the so-called cosmological problem, for without this, 

the considerations regarding the general theory of rela¬ 

tivity would, in a certain sense, remain unsatisfactory. 

Our previous considerations, based upon the field 

equations (96), had for a foundation the conception that 

space on the whole is Galilean-Euclidean, and that this 

character is disturbed only by masses embedded in it. 

This conception was certainly justified as long as we were 

dealing with spaces of the order of magnitude of those 
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that astronomy has to do with. But whether portions of 

the universe, however large they may be, are quasi- 

Euclidean, is a wholly different question. We can make 

this clear by using an example from the theory of surfaces 

which we have employed many times. If a portion of a 

surface is observed by the eye to be practically plane, it 

does not at all follow that the whole surface has the form 

of a plane ; the surface might just as well be a sphere, for 

example, of sufficiently large radius. The question as to 

whether the universe as a whole is non-Euclidean was 

much discussed from the geometrical point of view before 

the development of the theory of relativity. But with the 

theory of relativity, this problem has entered upon a 

new stage, for according to this theory the geometrical 

properties of bodies are not independent, but depend 

upon the distribution of masses. 

If the universe were quasi-Euclidean, then Mach was 

wholly wrong in his thought that inertia, as well as 

gravitation, depends upon a kind of mutual action between 

bodies. For in this case, with a suitably selected system 

of co-ordinates, the g^v would be constant at infinity, as 

they are in the special theory of relativity, while within 

finite regions the gixv would differ from these constant 

values by small amounts only, with a suitable choice of 

co-ordinates, as a result of the influence of the masses in 

finite regions. The physical properties of space would 

not then be wholly independent, that is, uninfluenced by 

matter, but in the main they would be, and only in 

small measure, conditioned by matter. Such a dualistic 

conception is even in itself not satisfactory; there are, 
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however, some important physical arguments against it, 

which we shall consider. 

The hypothesis that the universe is infinite and 

Euclidean at infinity, is, from the relativistic point of 

view, a complicated hypothesis. In the language of the 

general theory of relativity it demands that the Riemann 

tensor of the fourth rank R^imi shall vanish at infinity, 

which furnishes twenty independent conditions, while only 

ten curvature components R } enter into the laws of the 

gravitational field. It is certainly unsatisfactory to 

postulate such a far-reaching limitation without any 

physical basis for it. 

But in the second place, the theory of relativity makes 

it appear probable that Mach was on the right road in 

his thought that inertia depends upon a mutual action of 

matter. For we shall show in the following that, accord¬ 

ing to our equations, inert masses do act upon each other 

in the sense of the relativity of inertia, even if only very 

feebly. What is to be expected along the line of Mach’s 

thought ? 

1. The inertia of a body must increase when ponder¬ 

able masses are piled up in its neighbourhood. 

2. A body must experience an accelerating force when 

neighbouring masses are accelerated, and, in fact, 

the force must be in the same direction as the 

acceleration. 

3. A rotating hollow body must generate inside of 

itself a “ Coriolis field,” which deflects moving 

bodies in the sense of the rotation, and a radial 

centrifugal field as well. 
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We shall now show that these three effects, which are 

to be expected in accordance with Mach’s ideas, are 

actually present according to our theory, although their 

magnitude is so small that confirmation of them by 

laboratory experiments is not to be thought of. For this 

purpose we shall go back to the equations of motion of 

a material particle (90), and carry the approximations 

somewhat further than was done in equation (90a). 

First, we consider y4l as small of the first order. The 

square of the velocity of masses moving under the influence 

of the gravitational force is of the same order, according 

to the energy equation. It is therefore logical to regard 

the velocities of the material particles we are considering, 

as well as the velocities of the masses which generate the 

field, as small, of the order -J. We shall now carry out the 

approximation in the equations that arise from the field 

equations (101) and the equations of motion (90) so far 

as to consider terms, in the second member of (90), that 

are linear in those velocities. Further, we shall not put 

ds and dl equal to each other, but, corresponding to the 

higher approximation, we shall put 

ds = JFJi = 0 ~ 

From (90) we obtain, at first, 

+ 
744\^ 

2 ) dl J 
TV* 
1 a/3 

dx„ dx 

dl 

a dxj y44\ , 

+ fMIl6> 
From (101) we get, to the approximation sought for, 



112 THE MEANING OF RELATIVITY 

Yu 722 = 733 = 744 
K | o 

47rJ 
i x C dx0 

74a = - 2 G ds 

Y«0 = 0 

J / r 

(i 17) 

in which, in (117), a and /3 denote the space indices only. 

On the right-hand side of (116) we can replace 

r/ 

1 +2'by 1 and - I7 by [“/]. It is easy to see, in 

addition, that to this degree of approximation we must 

put 

M = 

ail _ 1 P>V* 
[;4] - 

[f] - ° 

4a 

cXtr 'bx, p-1 

in which a, /3 and fi denote space indices. We therefore 

obtain from (116), in the usual vector notation, 

d _ ^B 
.1 + <J>] = grad a- + + [rot B, v] 

k |WF0 

H = 

8ttJ r 

K r«%dv. 

\. (118) 

dl 0 

The equations of motion, (i 18), show now, in fact, that 
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1. The inert mass is proportional to I + a, and 

therefore increases when ponderable masses 

approach the test body. 

2. There is an inductive action of accelerated masses, 

of the same sign, upon the test body. This is 

, m 
the term 

3. A material particle, moving perpendicularly to the 

axis of rotation inside a rotating hollow body, 

is deflected in the sense of the rotation (Coriolis 

field). The centrifugal action, mentioned above, 

inside a rotating hollow body, also follows from 

the theory, as has been shown by Thirring.* 

Although all of these effects are inaccessible to experi¬ 

ment, because k is so small, nevertheless they certainly 

exist according to the general theory of relativity. We 

must see in them a strong support for Mach’s ideas as to 

the relativity of all inertial actions. If we think these 

ideas consistently through to the end we must expect the 

whole inertia, that is, the whole ^-field, to be determined 

by the matter of the universe, and not mainly by the 

boundary conditions at infinity. 

For a satisfactory conception of the ^,,-field of cosmical 

dimensions, the fact seems to be of significance that the 

relative velocity of the stars is small compared to the 

velocity of light. It follows from this that, with a suit- 

* That the centrifugal action must be inseparably connected with the 
existence of the Coriolis field may be recognized, even without calculation, 
in the special case of a co-ordinate system rotating uniformly relatively to 
an inertial system ; our general co-variant equations naturally must apply 
to such a case. 

8 
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able choice of co-ordinates, gu is nearly constant in the 

universe, at least, in that part of the universe in which 

there is matter. The assumption appears natural, more¬ 

over, that there are stars in all parts of the universe, so 

that we may well assume that the inconstancy of g^ 

depends only upon the circumstance that matter is not 

distributed continuously, but is concentrated in single 

celestial bodies and systems of bodies. If we are willing 

to ignore these more local non-uniformities of the density 

of matter and of the ^-field, in order to learn something 

of the geometrical properties of the universe as a whole, 

it appears natural to substitute for the actual distribution 

of masses a continuous distribution, and furthermore to 

assign to this distribution a uniform density a. In this 

imagined universe all points with space directions will 

be geometrically equivalent; with respect to its space 

extension it will have a constant curvature, and will be 

cylindrical with respect to its ^4-co-ordinate. The pos¬ 

sibility seems to be particularly satisfying that the universe 

is spatially bounded and thus, in accordance with our 

assumption of the constancy of a, is of constant curvature, 

being either spherical or elliptical; for then the boundary 

conditions at infinity which are so inconvenient from the 

standpoint of the general theory of relativity, may be 

replaced by the much more natural conditions for a closed 

surface. 

According to what has been said, we are to put 

ds1 = dx£ - 7[).vdxgixv . . (i 19) 

in which the indices fi and v run from 1 to 3 only. The 
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7M„ will be such functions of xx, x2, xz as correspond 

to a three-dimensional continuum of constant positive 

curvature. We must now investigate whether such an 

assumption can satisfy the field equations of gravitation. 

In order to be able to investigate this, we must first 

find what differential conditions the three-dimensional 

manifold of constant curvature satisfies. A spherical 

manifold of three dimensions, embedded in a Euclidean 

continuum of four dimensions,* is given by the equations 

x\ + x2 + x./ + x2 = a2 

dx^ + dxo2 + dxd + dx2 = ds1. 

By eliminating xi} we get 

ds1 — dx± + dx2 + dx22 + 
(x1dxl + x2dx2 + x-^dxj2 

d2 - X2 - x2 - x2 

As far as terms of the third and higher degrees in the 

xv, we can put, in the neighbourhood of the origin of 

co-ordinates, 

ds1 = (s„, + X-^)dxvdxv. 

Inside the brackets are the g^v of the manifold in the 

neighbourhood of the origin. Since the first derivatives 

of the g^v, and therefore also the Yvanish at the 

origin, the calculation of the R^v for this manifold, by 

(88), is very simple at the origin. We have 

2 <N _ 2 
5 - jgpr 

* The aid of a fourth space dimension has naturally no significance 

except that of a mathematical artifice. 
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2 
Since the relation is universally co-variant, 

and since all points of the manifold are geometrically 

equivalent, this relation holds for every system of co¬ 

ordinates, and everywhere in the manifold. In order to 

avoid confusion with the four-dimensional continuum, 

we shall, in the following, designate quantities that refer 

to the three-dimensional continuum by Greek letters, 

and put 

2 
P,uv = — -tfnv • • • (i 20) 

We now proceed to apply the field equations (96) to 

our special case. From (119) we get for the four-dimen¬ 

sional manifold, 

R^v = PM„ for the indices 1 to 3 

^14 = ^24 = ^34 = ^44 = O 

(121) 

For the right-hand side of (96) we have to consider 

the energy tensor for matter distributed like a cloud of 

dust. According to what has gone before we must 

therefore put 

T>xv = 
dx,L dxv 

a—- •— 
ds ds 

specialized for the case of rest. But in addition, we 

shall add a pressure term that may be physically estab¬ 

lished as follows. Matter consists of electrically charged 

particles. On the basis of Maxwell’s theory these 

cannot be conceived of as electromagnetic fields free 

from singularities. In order to be consistent with the 
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facts, it is necessary to introduce energy terms, not con¬ 

tained in Maxwell’s theory, so that the single electric 

particles may hold together in spite of the mutual re¬ 

pulsions between their elements, charged with electricity 

of one sign. For the sake of consistency with this fact, 

Poincare has assumed a pressure to exist inside these 

particles which balances the electrostatic repulsion. It 

cannot, however, be asserted that this pressure vanishes 

outside the particles. We shall be consistent with this 

circumstance if, in our phenomenological presentation, 

we add a pressure term. This must not, however, be 

confused with a hydrodynamical pressure, as it serves 

only for the energetic presentation of the dynamical 

relations inside matter. In this sense we put 

^ axa ax b , \ 
TH.V ~ ~ g^p. • 

In our special case we have, therefore, to put 

T^v = y^p (for and v from 1 to 3) 

! = - y^y^p + cr - p = a - 4/. 

Observing that the field equation (96) may be written 

in the form 

R- kg^T) 

we get from (96) the equations, 
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From this follows 

If the universe is quasi-Euclidean, and its radius of 

curvature therefore infinite, then a would vanish. But 

it is improbable that the mean density of matter in the 

universe is actually zero; this is our third argument 

against the assumption that the universe is quasi- 

Euclidean. Nor does it seem possible that our hypo¬ 

thetical pressure can vanish ; the physical nature of this 

pressure can be appreciated only after we have a better 

theoretical knowledge of the electromagnetic field. 

According to the second of equations (123) the radius, 

a, of the universe is determined in terms of the total 

mass, M, of matter, by the equation 

Mk 

47r2 

(124) 

The complete dependence of the geometrical upon the 

physical properties becomes clearly apparent by means 

of this equation. 

Thus we may present the following arguments against 

the conception of a space-infinite, and for the conception 

of a space-bounded, universe :— 

I. From the standpoint of the theory of relativity, 

the condition for a closed surface is very much simpler 

than the corresponding boundary condition at infinity 

of the quasi-Euclidean structure of the universe. 
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2. The idea that Mach expressed, that inertia depends 

upon the mutual action of bodies, is contained, to a 

first approximation, in the equations of the theory of 

relativity; it follows from these equations that inertia 

depends, at least in part, upon mutual actions between 

masses. As it is an unsatisfactory assumption to make 

that inertia depends in part upon mutual actions, and 

in part upon an independent property of space, Mach’s 

idea gains in probability. But this idea of Mach’s 

corresponds only to a finite universe, bounded in space, 

and not to a quasi-Euclidean, infinite universe. From 

the standpoint of epistemology it is more satisfying to 

have the mechanical properties of space completely de¬ 

termined by matter, and this is the case only in a space- 

bounded universe. 

3. An infinite universe is possible only if the mean 

density of matter in the universe vanishes. Although 

such an assumption is logically possible, it is less prob¬ 

able than the assumption that there is a finite mean 

density of matter in the universe. 
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