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PREFACE

THE
present book is intended, as far as possible,

to give an exact insight into the theory of Re

lativity to those readers who, from a general

scientific and philosophical point of view, are interested

in the theory, but who are not conversant with the

mathematical apparatus
l of theoretical physics. The

work presumes a standard of education corresponding

to that of a university matriculation examination,

and, despite the shortness of the book, a fair amount

of patience and force of will on the part of the reader.

The author has spared himself no pains in his endeavour

1 The mathematical fundaments of the special theory of

relativity are to be found in the original papers of H. A. Lorentz,

A. Einstein, H. Minkowski, published under the title Das

Relativitdtsprinzip (The Principle of Relativity) in B. G.

Teubner s collection of monographs Fortschritte der mathe-

matischen Wissenschajten (Advances in the Mathematical

Sciences), also in M. Laue s exhaustive book Das Relativitdts

prinzip published by Friedr. Vieweg & Son, Braunschweig.
The general theory of relativity, together with the necessary

parts of the theory of invariants, is dealt with in the author s

book Die Grundlagen der allgcmeinen Relativitdtstheorie (The
Foundations of the General Theory of Relativity) Joh. Ambr.

Barth, 1916 ; this book assumes some familiarity with the special

theory of relativity.
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to present the main ideas in the simplest and most in

telligible form, and on the whole, in the sequence and con

nection in which they actually originated. In the interest

of clearness, it appeared to me inevitable that I should

repeat myself frequently, without paying the slightest

attention to the elegance of the presentation. I adhered

scrupulously to the precept of that brilliant theoretical

physicist L. Boltzmann, according to whom matters of

elegance ought to be left to the tailor and to the cobbler.

I make no pretence of having withheld from the reader

difficulties which are inherent to the subject. On the

other hand, I have purposely treated the empirical

physical foundations of the theory in a
&quot;

step-motherly&quot;

fashion, so that readers unfamiliar with physics may
not feel like the wanderer who was unable to see the

forest for trees. May the book bring some one a few

happy hours of suggestive thought !

December, 1916 A. EINSTEIN

NOTE TO THE THIRD EDITION

IN
the present year (1918) an excellent and detailed

manual^on the general theory of relativity, written

by H. Weyl, was published by the firm Julius

Springer (Berlin). This book, entitled Raum Zsit

Materie (Space Time Matter), may be warmly recom

mended to mathematicians and physicists.
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later by the Theory of the Specific Heat of Solid Bodies,

and the fundamental idea of the General Theory of

Relativity. -XQ 3~V&amp;gt;
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R. W. L.



TRANSLATOR S NOTE

IN
presenting this translation to the English-

reading public, it is hardly necessary for me to

enlarge on the Author s prefatory remarks, except

to draw attention to those additions to the book which

do not appear in the original.

At my request, Professor Einstein kindly supplied

me with a portrait of himself, by one of Germany s

most celebrated artists. Appendix III, on
&quot; The

Experimental Confirmation of the General Theory of

Relativity,&quot; has been written specially for this trans

lation. Apart from these valuable additions to the book,

I have included a biographical note on the Author,

and, at the end of the book, an Index and a list of

English references to the sub
j
ect . This list , which is more

suggestive than exhaustive, is intended as a guide to those

readers who wish to pursue the subject farther.

I desire to tender my best thanks to my colleagues

Professor S. R. Milner, D.Sc., and Mr. W. E. Curtis,

A.R.C.SC., F.R.A.S., also to my friend Dr. Arthur

Holmes, A.R.C.Sc., F.G.S., of the Imperial College,

for their kindness in reading through the manuscript,
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for helpful criticism, and for numerous suggestions. I

owe an expression of thanks also to Messrs. Methuen

for their ready counsel and advice, and for the care

they have bestowed on the work during the course of

its publication.

ROBERT W. LAWSON

THE PHYSICS LABORATORY

THE UNIVERSITY OF SHEFFIELD

June 12, 1920
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RELATIVITY
PART I

THE SPECIAL THEORY OF RELATIVITY

PHYSICAL MEANING OF GEOMETRICAL
PROPOSITIONS

IN
your schooldays most of you who read this

book made acquaintance with the noble building of

Euclid s geometry, and you remember perhaps
with more respect than love the magnificent structure,

on the lofty staircase of which you were chased about

for uncounted hours by conscientious teachers. By
reason of your past experience, you would certainly

regard everyone with disdain who should pronounce even

the most out-of-the-way proposition of this science to

be untrue. But perhaps this feeling of proud certainty
would leave you immediately if some one were to ask

you :

&quot;

What, then, do you mean by the assertion that

these propositions are true ?
&quot;

Let us proceed to give
this question a little consideration.

Geometry sets out from certain conceptions such as
&quot;

plane,&quot;

&quot;

point,&quot; and
&quot;

straight line,&quot; with which
i
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we are able to associate more or less definite ideas, and

from certain simple propositions (axioms) which,

in virtue of these ideas, we are inclined to accept as
&quot;

true.&quot; Then, on the basis of a logical process, the

justification of which we feel ourselves compelled to

admit, all remaining propositions are shown to follow

from those axioms, i.e. they are proven. A proposition

is then correct
(&quot;

true
&quot;)

when it has been derived in the

recognised manner from the axioms. The question

of the
&quot;

truth
&quot;

of the individual geometrical proposi

tions is thus reduced to one of the
&quot;

truth
&quot;

of the

axioms. Now it has long been known that the last

question is not only unanswerable by the methods of

geometry, but that it is in itself entirely without mean

ing. We cannot ask whether it is true that only one

straight line goes through two points. We can only

say that Euclidean geometry deals with things called
&quot;

straight lines,&quot; to each of which is ascribed the pro

perty of being uniquely determined by two points
situated on it. The concept

&quot;

true
&quot;

does not tally with

the assertions of pure geometry, because by the word
&quot;

true
&quot; we are eventually in the habit of designating

always the correspondence with a
&quot;

real
&quot;

object ;

geometry, however, is not concerned with the relation

of the ideas involved in it to objects of experience, but

only with the logical connection of these ideas among
themselves.

It is not difficult to understand why, in spite of this,

we feel constrained to call the propositions of geometry
&quot;

true.&quot; Geometrical ideas correspond to more or less

exact objects in nature, and these last are undoubtedly
the exclusive cause of the genesis of those ideas. Geo

metry ought to refrain from such a course, in order to
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give to its structure the largest possible logical unity.

The practice, for example, of seeing in a
&quot;

distance
&quot;

two marked positions on a practically rigid body is

something which is lodged deeply in our habit of thought.
We are accustomed further to regard three points as

being situated on a straight line, if their apparent

positions can be made to coincide for observation with

one eye, under suitable choice of our place of observa

tion.

If, in pursuance of our habit of thought, we now

supplement the propositions of Euclidean geometry by
the single proposition that two points on a practically

rigid body always correspond to the same distance

(line-interval), independently of any changes in position

to which we may subject the body, the propositions of

Euclidean geometry then resolve themselves into pro

positions on the possible relative position of practically

rigid bodies.1
Geometry which has been supplemented

in this way is then to be treated as a branch of physics.

We can now legitimately ask as to the
&quot;

truth
&quot;

of

geometrical propositions interpreted in this way, since

we are justified in asking whether these propositions

are satisfied for those real things we have associated

with the geometrical ideas. In less exact terms we can

express this by saying that by the
&quot;

truth
&quot;

of a geo
metrical proposition in this sense we understand its

validity for a construction with ruler and compasses.

1 It follows that a natural object is associated also with a

straight line. Three points A, B and C on a rigid body thus

lie in a straight line when, the points A and C being given, B
is chosen such that the sum of the distances AD and BC is as

short as possible. This incomplete suggestion will suffice for

our present purpose.
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Of course the conviction of the
&quot;

truth
&quot;

of geo
metrical propositions in this sense is founded exclusively
on rather incomplete experience. For the present we
shall assume the

&quot;

truth
&quot;

of the geometrical proposi

tions, then at a later stage (in the general theory of

relativity) we shall see that this
&quot;

truth
&quot;

is limited,

and we shall consider the extent of its limitation.
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THE SYSTEM OF CO-ORDINATES

ON
the basis of the physical interpretation of dis

tance which has been indicated, we are also

in a position to establish the distance between

two points on a rigid body by means of measurements.

For this purpose we require a
&quot;

distance
&quot;

(rod 5)

which is to be used once and for all, and which we

employ as a standard measure. If, now, A and B are

two points on a rigid body, we can construct the

line joining them according to the rules of geometry ;

then, starting from A, we can mark off the distance

S time after time until we reach B. The number of

these operations required is the numerical measure

of the distance AB. This is the basis of all measure

ment of length.
1

Every description of the scene of an event or of the

position of an object in space is based on the specifica

tion of the point on a rigid body (body of reference)

with which that event or object coincides. This applies

not only to scientific description, but also to everyday
life. If I analyse the place specification

&quot;

Trafalgar

1 Here we have assumed that there is nothing left over, i.e.

that the measurement gives a whole number. This difficulty
is got over by the use of divided measuring-rods, the introduction

of which does not demand any fundamentally new method.
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Square, London,&quot;
1 I arrive at the following result.

The earth is the rigid body to which the specification

of place refers ;

&quot;

Trafalgar Square, London,&quot; is a

well-defined point, to which a name has been assigned,

and with which the event coincides in space.
2

This primitive method of place specification deals

only with places on the surface of rigid bodies, and is

dependent on the existence of points on this surface

which are distinguishable from each other. But we
can free ourselves from both of these limitations without

altering the nature of our specification of position.

If, for instance, a cloud is hovering over Trafalgar

Square, then we can determine its position relative to

the surface of the earth by erecting a pole perpendicu

larly on the Square, so that it reaches the cloud. The

length of the pole measured with the standard measuring-

rod, combined with the specification of the position of

the foot of the pole, supplies us with a complete place

specification. On the basis of this illustration, we are

able to see the manner in which a refinement of the con

ception of position has been developed.

(a) We imagine the rigid body, to which the place

specification is referred, supplemented in such a manner
that the object whose position we require is reached by
the completed rigid body.

(b] In locating the position of the object, we make
use of a number (here the length of the pole measured

1 I have chosen this as being more familiar to the English
reader than the &quot; Potsdamer Platz, Berlin,&quot; which is referred to
in the original. (R. W. L.)

2 It is not necessary here to investigate further the significance
of the expression

&quot;

coincidence in
space.&quot; This conception is

sufficiently obvious to ensure that differences of opinion ar*

scarcely likely to arise as to its applicability in practice.
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with the measuring-rod) instead of designated points of

reference.

(c) We speak of the height of the cloud even when the

pole which reaches the cloud has not been erected.

By means of optical observations of the cloud from

different positions on the ground, and taking into account

the properties of the propagation of light, we determine

the length of the pole we should have required in order

to reach the cloud.

From this consideration we see that it will be ad

vantageous if, in the description of position, it should be

possible by means of numerical measures to make our

selves independent of the existence of marked positions

(possessing names) on the rigid body of reference. In

the physics of measurement this is attained by the

application of the Cartesian system of co-ordinates.

This consists of three plane surfaces perpendicular
to each other and rigidly attached to a rigid body.
Referred to a system of co-ordinates, the scene of any
event will be determined (for the main part) by the

specification of the lengths of the three perpendiculars
or co-ordinates (x, y, z) which can be dropped from the

scene of the event to those three plane surfaces. The

lengths of these three perpendiculars can be deter

mined by a series of manipulations with rigid measuring-
rods performed according to the rules and methods laid

down by Euclidean geometry.
In practice, the rigid surfaces which constitute the

system of co-ordinates are generally not available ;

furthermore, the magnitudes of the co-ordinates are not

actually determined by constructions with rigid rods, but

by indirect means. If the results of physics and astron

omy are to maintain their clearness, the physical mean-
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ing of specifications of position must always be sought
in accordance with the above considerations. 1

We thus obtain the following result : Every descrip

tion of events in space involves the use of a rigid body
to which such events have to be referred. The resulting

relationship takes for granted that the laws of Euclidean

geometry hold for
&quot;

distances,&quot; the
&quot;

distance
&quot;

being

represented physically by means of the convention of

two marks on a rigid body.

1 A refinement and modification of these views does not become

necessary until we come to deal with the general theory of

relativity, treated in the second part of this book.
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SPACE AND TIME IN CLASSICAL MECHANICS

THE
purpose of mechanics is to describe how

bodies change their position in space with

time.&quot; I should load my conscience with grave
sins against the sacred spirit of lucidity were I to

formulate the aims of mechanics in this way, without

serious reflection and detailed explanations. Let us

proceed to disclose these sins.

It is not clear what is to be understood here by
&quot;

position
&quot;

and
&quot;

space.&quot; I stand at the window of a

railway carriage which is travelling uniformly, and drop
a stone on the embankment, without throwing it. Then,

disregarding the influence of the air resistance, I see the

stone descend in a straight line. A pedestrian who
observes the misdeed from the footpath notices that the

stone falls to earth in a parabolic curve. I now ask :

Do the
&quot;

positions
&quot;

traversed by the stone lie
&quot;

in

reality
&quot;

on a straight line or on a parabola ? Moreover,

what is meant here by motion
&quot;

in space
&quot;

? From the

considerations of the previous section the answer is

self-evident. In the first place, we entirely shun the

vague word &quot;

space,&quot; of which, we must honestly

acknowledge, we cannot form the slightest concep

tion, and we replace it by
&quot;

motion relative to a

practically rigid body of reference.&quot; The positions

relative to the body of reference (railway carriage or

embankment) have already been defined in detail in the
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preceding section. If instead of
&quot;

body of reference
&quot;

we insert
&quot;

system of co-ordinates,&quot; which is a useful

idea for mathematical description, we are in a position

to say : The stone traverses a straight line relative to a

system of co-ordinates rigidly attached to the carriage,

but relative to a system of co-ordinates rigidly attached

to the ground (embankment) it describes a parabola.

With the aid of this example it is clearly seen that there

is no such thing as an independently existing trajectory

(lit.

&quot;

path-curve
&quot; 1

), but only a trajectory relative to a

particular body of reference.

In order to have a complete description of the motion,

we must specify how the body alters its position with

time ; i.e. for every point on the trajectory it must be

stated at what time the body is situated there. These

data must be supplemented by such a definition of

time that, in virtue of this definition, these time-values

can be regarded essentially as magnitudes (results of

measurements) capable of observation. If we take our

stand on the ground of classical mechanics, we can

satisfy this requirement for our illustration in the

following manner. We imagine two clocks of identical

construction ; the man at the railway-carriage window
is holding one of them, and the man on the foot

path the other. Each of the observers determines

the position on his own reference-body occupied by the

stone at each tick of the clock he is holding in his

hand. In this connection we have not taken account

of the inaccuracy involved by the finiteness of the

velocity of propagation of light. With this and with a

second difficulty prevailing here we shall have to deal

in detail later.

1 That is, a curve along which the body moves.
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THE GALILEIAN SYSTEM OF CO-ORDINATES

AS
is well known, the fundamental law of the

mechanics of Galilei-Newton, which is known
as the law of inertia, can be stated thus :

A body removed sufficiently far from other bodies

continues in a state of rest or of uniform motion

in a straight line. This law not only says some

thing about the motion of the bodies, but it also

indicates the reference -bodies or systems of co

ordinates, permissible in mechanics, which can be used

in mechanical description. The visible fixed stars are

bodies for which the law of inertia certainly holds to a

high degree of approximation. Now if we use a system
of co-ordinates which is rigidly attached to the earth,

then, relative to this system, every fixed star describes

a circle of immense radius in the course of an astrono

mical day, a result which is opposed to the statement

of the law of inertia. So that if we adhere to this law

we must refer these motions only to systems of co

ordinates relative to which the fixed stars do not move
in a circle. A system of co-ordinates of which the state

of motion is such that the law of inertia holds relative to

it is called a
&quot;

Galileian system of co-ordinates.&quot; The

laws of the mechanics of Galilei-Newton can be regarded
as valid only for a Galileian system of co-ordinates.



THE PRINCIPLE OF RELATIVITY (IN THE
RESTRICTED SENSE)

IN
order to attain the greatest possible clearness,

let us return to our example of the railway carriage

supposed to be travelling uniformly. We call its

motion a uniform translation
(&quot;

uniform
&quot;

because

it is of constant velocity and direction,
&quot;

translation
&quot;

because although the carriage changes its position

relative to the embankment yet it does not rotate

in so doing). Let us imagine a raven flying through
the air in such a manner that its motion, as observed

from the embankment, is uniform and in a straight

line. If we were to observe the flying raven from

the moving railway carriage, we should find that the

motion of the raven would be one of different velo

city and direction, but that it would still be uniform

and in a straight line. Expressed in an abstract

manner we may say : If a mass m is moving uni

formly in a straight line with respect to a co-ordinate

system K, then it will also be moving uniformly and in a

straight line relative to a second co-ordinate system
K

, provided that the latter is executing a uniform

translatory motion with respect to K. In accordance
with the discussion contained in the preceding section,

it follows that :



If K is a Galileian co-ordinate system, then every other

co-ordinate system K is a Galileian one, when, in rela

tion to K, it is in a condition of uniform motion of trans

lation. Relative to K the mechanical laws of Galilei-

Newton hold good exactly as they do with respect to K.

We advance a step farther in our generalisation when
we express the tenet thus : If, relative to K, K is a

uniformly moving co-ordinate system devoid of rotation,

then natural phenomena run their course with respect to

K according to exactly the same general laws as with

respect to K. This statement is called the principle

of relativity (in the restricted sense).

As long as one was convinced that all natural pheno
mena were capable of representation with the help of

classical mechanics, there was no need to doubt the

validity of this principle of relativity. But in view of

the more recent development of electrodynamics and

optics it became more and more evident that classical

mechanics affords an insufficient foundation for the

physical description of all natural phenomena. At this

juncture the question of the validity of the principle of

relativity became ripe for discussion, and it did not

appear impossible that the answer to this question

might be in the negative.

Nevertheless, there are two general facts which at the

outset speak very much in favour of the validity of the

principle of relativity. Even though classical mechanics

does not supply us with a sufficiently broad basis for the

theoretical presentation of all physical phenomena,
still we must grant it a considerable measure of

&quot;

truth,&quot;

since it supplies us with the actual motions of the

heavenly bodies with a delicacy of detail little short of

wonderful. The principle of relativity must therefore



apply with great accuracy in the domain of mechanics.

But that a principle of such broad generality should

hold with such exactness in one domain of phenomena,
and yet should be invalid for another, is a priori not

very probable.
We now proceed to the second argument, to which,

moreover, we shall return later. If the principle of rela

tivity (in the restricted sense) does not hold, then the

Galileian co-ordinate systems K, K , K&quot;, etc., which are

moving uniformly relative to each other, will not be

equivalent for the description of natural phenomena.
In this case we should be constrained to believe that

natural laws are capable of being formulated in a par

ticularly simple manner, and of course only on condition

that, from amongst all possible Galileian co-ordinate

systems, we should have chosen one (K )
of a particular

state of motion as our body of reference. We should

then be justified (because of its merits for the description
of natural phenomena) in calling this system

&quot;

absolutely

at rest,&quot; and all other Galileian systems K
&quot;

in motion.&quot;

If, for instance, our embankment were the system K^,
then our railway carriage would be a system K,
relative to which less simple laws would hold than with

respect to K . This diminished simplicity would be

due to the fact that the carriage K would be in motion

(i.e.

&quot;

really &quot;)
with respect to K . In the general laws

of nature which have been formulated with refer

ence to K, the magnitude and direction of the velocity
of the carriage would necessarily play a part. We should

expect, for instance, that the note emitted by an organ-

pipe placed with its axis parallel to the direction of

travel would be different from that emitted if the axis

of the pipe were placed perpendicular to this direction.
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Now in virtue of its motion in an orbit round the sun,

our earth is comparable with a railway carriage travel

ling with a velocity of about 30 kilometres per second.

If the principle of relativity were not valid we should

therefore expect that the direction of motion of the

earth at any moment would enter into the laws of nature,

and also that physical systems in their behaviour would

be dependent on the orientation in space with respect

to the earth. For owing to the alteration in direction

of the velocity of revolution of the earth in the course

of a year, the earth cannot be at rest relative to the

hypothetical system K throughout the whole year.

However, the most careful observations have never

revealed such anisotropic properties in terrestrial physi
cal space, i.e. a physical non-equivalence of different

directions. This is very powerful argument in favour

of the principle of relativity.



VI

THE THEOREM OF THE ADDITION OF VELOCI
TIES EMPLOYED IN CLASSICAL MECHANICS

LET
us suppose our old friend the railway carriage

to be travelling along the rails with a constant

velocity v, and that a man traverses the length of

the carriage in the direction of travel with a velocity w.

How quickly or, in other words, with what velocity W
does the man advance relative to the embankment

during the process ? The only possible answer seems to

result from the following consideration : If the man were

to stand still for a second, he would advance relative to

the embankment through a distance v equal numerically
to the velocity of the carriage. As a consequence of

his walking, however, he traverses an additional distance

w relative to the carriage, and hence also relative to the

embankment, in this second, the distance w being

numerically equal to the velocity with which he is

walking. Thus in total he covers the distance W=v-\-w
relative to the embankment in the second considered.

We shall see later that this result, which expresses
the theorem of the addition of velocities employed in

classical mechanics, cannot be maintained
; in other

words, the law that we have just written down does not

hold in reality. For the time being, however, we shall

assume its correctness.
16



VII

THE APPARENT INCOMPATIBILITY OF THE
LAW OF PROPAGATION OF LIGHT WITH
THE PRINCIPLE OF RELATIVITY

THERE
is hardly a simpler law in physics than

that according to which light is propagated in

empty space. Every child at school knows, or

believes he knows, that this propagation takes place
in straight lines with a velocity = 300,000 km./sec.

At all events we know with great exactness that this

velocity is the same for all colours, because if this were

not the case, the minimum of emission would not be

observed simultaneously for different colours during
the eclipse of a fixed star by its dark neighbour. By
means of similar considerations based on observa

tions of double stars, the Dutch astronomer De Sitter

was also able to show that the velocity of propaga
tion of light cannot depend on the velocity of motion

of the body emitting the light. The assumption that

this velocity of propagation is dependent on the direc

tion
&quot;

in space
&quot;

is in itself improbable.
In short, let us assume that the simple law of the

constancy of the velocity of light c (in vacuum) is

justifiably believed by the child at school. Who would

imagine that this simple law has plunged the con

scientiously thoughtful physicist into the greatest
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intellectual difficulties ? Let us consider how these

difficulties arise.

Of course we must refer the process of the propaga
tion of light (and indeed every other process) to a rigid

reference-body (co-ordinate system). As such a system
let us again choose our embankment. We shall imagine
the air above it to have been removed. If a ray of

light be sent along the embankment, we see from the

above that the tip of the ray will be transmitted with

the velocity c relative to the embankment. Now let

us suppose that our railway carriage is again travelling

along the railway lines with the velocity v, and that

its direction is the same as that of the ray of light, but

its velocity of course much less. Let us inquire about

the velocity of propagation of the ray of light relative

to the carriage. It is obvious that we can here apply the

consideration of the previous section, since the ray of

light plays the part of the man walking along relatively

to the carriage. The velocity W of the man relative

to the embankment is here replaced by the velocity
of light relative to the embankment, w is the required

velocity of light with respect to the carriage, and we
have

w c - v.

The velocity of propagation of a ray of light relative to

the carriage thus comes out smaller than c.

But this result comes into conflict with the principle
of relativity set forth in Section V. For, like every
other general law of nature, the law of the transmission

of light in vacuo must, according to the principle of

relativity, be the same for the railway carriage as 1

reference-body as when the rails are the body of refeil
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mce. But, from our above consideration, this would

ippear to be impossible. If every ray of light is pro

pagated relative to the embankment with the velocity

;, then for this reason it would appear that another law

)i propagation of light must necessarily hold with respect

;o the carriage a result contradictory to the principle

:&amp;gt;f relativity.

In view of this dilemma there appears to be nothing
jlse for it than to abandon either the principle of rela-

[ivity or the simple law of the propagation of light in

MCUO. Those of you who have carefully followed the

preceding discussion are almost sure to expect that

sve should retain the principle of relativity, which

ippeals so convincingly to the intellect because it is so

natural and simple. The law of the propagation of

iight in vacua would then have to be replaced by a

more complicated law conformable to the principle of

relativity. The development of theoretical physics

shows, however, that we cannot pursue this course.

The epoch-making theoretical investigations of H. A.

Lorentz on the electrodynamical and optical phenomena
connected with moving bodies show that experience
in this domain leads conclusively to a theory of electro

magnetic phenomena, of which the law of the constancy
of the velocity of light in vacua is a necessary conse

quence. Prominent theoretical physicists were there

fore more inclined to reject the principle of relativity,

in spite of the fact that no empirical data had been

found which were contradictory to this principle.

At this juncture the theory of relativity entered the

arena. As a result of an analysis of the physical con

ceptions of time and space, it became evident that in

reality there is not the least incompatibility ietween the
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principle of relativity and the law of propagation of light,

and that by systematically holding fast to both these

laws a logically rigid theory could be arrived at. This

theory has been called the special theory of relativity

to distinguish it from the extended theory, with which

we shall deal later. In the following pages we shall

present the fundamental ideas of the special theory of

relativity.



VIII

ON THE IDEA OF TIME IN PHYSICS

LIGHTNING

has struck the rails on our railway
embankment at two places A and B far distant

from each other. I make the additional assertion

that these two lightning flashes occurred simultaneously.
If I ask you whether there is sense in this statement,

you will answer my question with a decided
&quot;

Yes.&quot; But if I now approach you with the request

to explain to me the sense of the statement more

precisely, you find after some consideration that the

answer to this question is not so easy as it appears at

first sight.

After some time perhaps the following answer would

occur to you :

&quot; The significance of the statement is

clear in itself and needs no further explanation ; of

course it would require some consideration if I were to

be commissioned to determine by observations whether

in the actual case the two events took place simul

taneously or not.&quot; I cannot be satisfied with this answer

for the following reason. Supposing that as a result

of ingenious considerations an able meteorologist were

to discover that the lightning must always strike the

places A and B simultaneously, then we should be faced

with the task of testing whether or not this theoretical

result is in accordance with the reality. We encounter



the same difficulty with all physical statements in which

the conception
&quot;

simultaneous
&quot;

plays a part. The

concept does not exist for the physicist until he has the

possibility of discovering whether or not it is fulfilled

in an actual case. We thus require a definition of

simultaneity such that this definition supplies us with

the method by means of which, in the present case, he

can decide by experiment whether or not both the

lightning strokes occurred simultaneously. As long

as this requirement is not satisfied, I allow myself to be

deceived as a physicist (and of course the same applies

if I am not a physicist), when I imagine that I am able

to attach a meaning to the statement of simultaneity.

(I would ask the reader not to proceed farther until he

is fully convinced on this point.)

After thinking the matter over for some time you
then offer the following suggestion with which to test

simultaneity. By measuring along the rails, the

connecting line AB should be measured up and an

observer placed at the mid-point M of the distance AB.
This observer should be supplied with an arrangement

(e.g. two mirrors inclined at 90) which allows him

visually to observe both places A and B at the same
time. If the observer perceives the two flashes of

lightning at the same time, then they are simultaneous.

I am very pleased with this suggestion, but for all

that I cannot regard the matter as quite settled, because

I feel constrained to raise the following objection :

&quot; Your definition would certainly be right, if I only
knew that the light by means of which the observer

at M perceives the lightning flashes travels along the

length A &amp;gt; M with the same velocity as along the

length B &amp;gt; M. But an examination of this supposi-
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tion would only be possible if we already had at our

disposal the means of measuring time. It would thus

appear as though we were moving here in a logical circle.&quot;

After further consideration you cast a somewhat

disdainful glance at me and rightly so and you
declare : &quot;I maintain my previous definition neverthe

less, because in reality it assumes absolutely nothing
about light. There is only one demand to be made of

the definition of simultaneity, namely, that in every
real case it must supply us with an empirical decision

as to whether or not the conception that has to

be defined is fulfilled. That my definition satisfies

this demand is indisputable. That light requires the

same time to traverse the path A &amp;gt; M as for the path
B &amp;gt;M is in reality neither a supposition nor a hypothesis

about the physical nature of light, but a stipulation

which I can make of my own freewill in order to arrive

at a definition of simultaneity.&quot;

It is clear that this definition can be used to give an

exact meaning not only to two events, but to as many
events as we care to choose, and independently of the

positions of the scenes of the events with respect to the

body of reference 1
(here the railway embankment).

We are thus led also to a definition of
&quot;

time
&quot;

in physics.

For this purpose we suppose that clocks of identical

construction are placed at the points A, B and C of

1 We suppose further, that, when three events A, B and C
occur in different places in such a manner that A is simul

taneous with B, and B is simultaneous with C (simultaneous
in the sense of the above definition), then the criterion for the

simultaneity of the pair of events A, C is also satisfied. This

assumption is a physical hypothesis about the law of propagation
of light ;

it must certainly be fulfilled if we are to maintain the

law of the constancy of the velocity of light in vacua.
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the railway line (co-ordinate system), and that they
are set in such a manner that the positions of their

pointers are simultaneously (in the above sense) the

same. Under these conditions we understand by the
&quot;

time
&quot;

of an event the reading (position of the hands)

of that one of these clocks which is in the immediate

vicinity (in space) of the event. In this manner a

time-value is associated with every event which is

essentially capable of observation.

This stipulation contains a further physical hypothesis,
the validity of which will hardly be doubted without

empirical e vddence to the contrary. It has been assumed

that all these clocks go at the same vote if they are of

identical construction. Stated more exactly : When
two clocks arranged at rest in different places of a

reference-body are set in such a manner that a particular

position of the pointers of the one clock is simultaneous

(in the above sense) with the same position of the

pointers of the other clock, then identical
&quot;

settings
&quot;

are always simultaneous (in the sense of the above

definition).



IX

THE RELATIVITY OF SIMULTANEITY

UP
to now our considerations have been referred

to a particular body of reference, which we
have styled a

&quot;

railway embankment.&quot; We
suppose a very long train travelling along the rails

with the constant velocity v and in the direction in

dicated in Fig. i. People travelling in this train will

with advantage use the train as a rigid reference-

body (co-ordinate system) ; they regard all events in

TrainV
y
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simultaneous with respect to the embankment, we
mean : the rays of light emitted at the places A and

B, where the lightning occurs, meet each other at the

mid-point M of the length A &amp;gt; B of the embankment.

But the events A and B also correspond to positions A
and B on the train. Let M be the mid-point of the

distance A &amp;gt; B on the travelling train. Just when
the flashes 1 of lightning occur, this point M naturally

coincides with the point M, but it moves towards the

right in the diagram with the velocity v of the train. If

an observer sitting in the position M in the train did

not possess this velocity, then he would remain per

manently at M, and the light rays emitted by the

flashes of lightning A and B would reach him simul

taneously, i.e. they would meet just where he is situated.

Now in reality (considered with reference to the railway

embankment) he is hastening towards the beam of light

coming from B, whilst he is riding on ahead of the beam
of light coming from A. Hence the observer will see

the beam of light emitted from B earlier than he will

see that emitted from A. Observers who take the rail

way train as their reference-body must therefore come
to the conclusion that the lightning flash B took place
earlier than the lightning flash A. We thus arrive at

the important result :

Events which are simultaneous with reference to the

embankment are not simultaneous with respect to the

train, and vice versa (relativity of simultaneity). Every
reference-body (co-ordinate system) has its own particular
time ; unless we are told the reference-body to which

the statement of time refers, there is no meaning in a

statement of the time of an event.

1 As judged from the embankment.
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Now before the advent of the theory of relativity

it had always tacitly been assumed in physics that the

statement of time had an absolute significance, i.e.

that it is independent of the state of motion of the body
of reference. But we have just seen that this assump
tion is incompatible with the most natural definition

of simultaneity ; if we discard this assumption, then

the conflict between the law of the propagation of

light in vacua and the principle of relativity (developed
in Section VII) disappears.

We were led to that conflict by the considerations

of Section VI, which are now no longer tenable. In

that section we concluded that the man in the carriage,

who traverses the distance w per second relative to the

carriage, traverses the same distance also with respect to

the embankment in each second of time. But, according
to the foregoing considerations, the time required by a

particular occurrence with respect to the carriage must

not be considered equal to the duration of the same

occurrence as judged from the embankment (as refer

ence-body). Hence it cannot be contended that the

man in walking travels the distance w relative to the

railway line in a time which is equal to one second as

judged from the embankment.

Moreover, the considerations of Section VI are based

on yet a second assumption, which, in the light of a

strict consideration, appears to be arbitrary, although
it was always tacitly made even before the introduction

of the theory of relativity.



X

ON THE RELATIVITY OF THE CONCEPTION
OF DISTANCE

LET
us consider two particular points on the train l

travelling along the embankment with the

velocity v, and inquire as to their distance apart.

We already know that it is necessary to have a body of

reference for the measurement of a distance, with respect

to which body the distance can be measured up. It is

the simplest plan to use the train itself as reference-

body (co-ordinate system). An observer in the train

measures, the interval by marking off his measuring-rod
in a straight line (e.g. along the floor of the carriage)

as many times as is necessary to take him from the one

marked point to the other. Then the number which

tells us how often the rod has to be laid down is the

required distance.

It is a different matter when the distance has to be

judged from the railway line. Here the following
method suggests itself. If we call A and B the two

points on the train whose distance apart is required,
then both of these points are moving with the velocity v

along the embankment. In the first place we require to

determine the points A and B of the embankment which

are just being passed by the two points A and B at a

1
e.g. the middle of the first and of the hundredth carriage.

28
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particular time t judged from the embankment.

These points A and B of the embankment can be deter

mined by applying the definition of time given in

Section VIII. The distance between these points A
and B is then measured by repeated application of the

measuring-rod along the embankment.
A priori it is by no means certain that this last

measurement will supply us with the same result as

the first. Thus the length of the train as measured

from the embankment may be different from that

obtained by measuring in the train itself. This

circumstance leads us to a second objection which must

be raised against the apparently obvious considera

tion of Section VI. Namely, if the man in the carriage

covers the distance w in a unit of time measured from
the train, then this distance as measured from the

embankment is not necessarily also equal to w.



XI

THE LORENTZ TRANSFORMATION

THE
results of the last three sections show

that the apparent incompatibility of the law

of propagation of light with the principle of

relativity (Section VII) has been derived by means of

a consideration which borrowed two unjustifiable

hypotheses from classical mechanics; these are as

follows :

(1) The time-interval (time) between two events is

independent of the condition of motion of the

body of reference.

(2) The space-interval (distance) between two points

of a rigid body is independent of the condition

of motion of the body of reference.

If we drop these hypotheses, then the dilemma of

Section VII disappears, because the theorem of the addi

tion of velocities derived in Section VI becomes invalid.

The possibility presents itself that the law of the pro

pagation of light in vacuo may be compatible with the

principle of relativity, and the question arises : How
have we to modify the considerations of Section VI

in order to remove the apparent disagreement between

these two fundamental results of experience ? This

question leads to a general one. In the discussion of
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Section VI we have to do with places and times relative

both to the train and to the embankment. How are

we to find the place and time of an event in relation to

the train, when we know the place and time of the

event with respect to the railway embankment ? Is

there a thinkable answer to this question of such a

nature that the law of transmission of light in vacua

does not contradict the principle of relativity ? In

other words : Can we conceive of a relation between

place and time of the individual events relative to both

reference-bodies, such that every ray of light possesses

the velocity of transmission c relative to the embank
ment and relative to the train ? This question leads to

a quite definite positive answer, and to a perfectly definite

transformation law for the space-time magnitudes of

an event when changing over from one body of reference

to another.

Before we deal with this, we shall introduce the

following incidental consideration. Up to the present
we have only considered events taking place along the

embankment, which had mathematically to assume the

function of a straight line. In the manner indicated

in Section II we can imagine this reference-body supple
mented laterally and in a vertical direction by means of

a framework of rods, so that an event which takes place

anywhere can be localised with reference to this frame

work. Similarly, we can imagine the train travelling

with the velocity v to be continued across the whole of

space, so that every event, no matter how far off it

may be, could also be localised with respect to the second

framework. Without committing any fundamental error,

we can disregard the fact that in reality these frame

works would continually interfere with each other, owing
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to the impenetrability of solid bodies. In every such

framework we imagine three surfaces perpendicular to

each other marked out, and designated as
&quot;

co-ordinate

planes
&quot;

(&quot;
co-ordinate system &quot;).

A co-ordinate

system K then corresponds to the embankment, and a

co-ordinate system K to the train. An event, wherever

it may have taken place, would be fixed in space with

respect to K by the three perpendiculars x, y, z on the

co-ordinate planes, and with regard to time by a time-

x
. value t. Relative to K ,

the

same event would be fixed

in respect of space and time

by corresponding values x t

y ,
z

,
t

,
which of course are

not identical with x, y, z,

t. It has already been set

forth in detail how these

magnitudes are to be re

garded as results of physical measurements.

Obviously our problem can be exactly formulated in

the following manner. What are the values x, y ,
z , t

,

of an event with respect to K , when the magnitudes

x, y, z, t, of the same event with respect to K are given ?

The relations must be so chosen that the law of the

transmission of light in vacua is satisfied for one and the

same ray of light (and of course for every ray) with

respect to K arid K . For the relative orientation in

space of the co-ordinate systems indicated in the dia

gram (Fig. 2), this problem is solved by means of the

equations :

x-vt

FIG. 2.

A / v*VT --,
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V*

c*

This system of equations is known as the
&quot;

Lorentz

transformation.&quot; l

If in place of the law of transmission of light we had

taken as our basis the tacit assumptions of the older

mechanics as to the absolute character of times and

lengths, then instead of the above we should have

obtained the following equations :

x =x vt

y y
z =z
t =t.

This system of equations is often termed the
&quot;

Galilei

transformation.&quot; The Galilei transformation can be

obtained from the Lorentz transformation by sub

stituting an infinitely large value for the velocity of

light c in the latter transformation.

Aided by the following illustration, we can readily

see that, in accordance with the Lorentz transforma

tion, the law of the transmission of light in vacua

is satisfied both for the reference-body K and for the

reference-body K . A light-signal is sent along the

positive #-axis, and this light-stimulus advances in

accordance with the equation

x=ct,

1 A simple derivation of the Lorentz transformation is given
in Appendix I.

3
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i.e. with the velocity c. According to the equations of

the Lorentz transformation, this simple relation between

x and t involves a relation between x and t . In point

of fact, if we substitute for x the value ct in the first

and fourth equations of the Lorentz transformation,

we obtain :

_

/ V2

Vi-a

/V
V

I 9
cz

from which, by division, the expression

x =ct

immediately follows. If referred to the system K , the

propagation of light takes place according to this

equation. We thus see that the velocity of transmission

relative to the reference-body K is also equal to c. The

same result is obtained for rays of light advancing in

any other direction whatsoever. Of course this is not

surprising, since the equations of the Lorentz trans

formation were derived conformably to this point of

view.



XII

THE BEHAVIOUR OF MEASURING-RODS AND
CLOCKS IN MOTION

I
PLACE a metre-rod in the A; -axis of K in such a

manner that one end (the beginning) coincides with

the point x =o, whilst the other end (the end of the

rod) coincides with the point x =i. What is the length
of the metre-rod relatively to the system K ? In order

to learn this, we need only ask where the beginning of the

rod and the end of the rod lie with respect to K at a

particular time i of the system K. By means of the first

equation of the Lorentz transformation the values of

these two points at the time t=o can be shown to be

(beginning of rod)
/T*V ]

2

*(end of rod)

/ ifi

\/ i - -^the distance between the points being \/ i - -^ But
c

the metre-rod is moving with the velocity v relative to

K. It therefore follows that the length of a rigid metre-

rod moving in the direction of its length with a velocity

v is Ji v2/c
z of a metre. The rigid rod is thus

shorter when in motion than when at rest, and the

more quickly it is moving, the shorter is the rod. For

the velocity vc we should have v/i-v2
/c

2=o, and

for still greater velocities the square-root becomes
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imaginary. From this we conclude that in the theory

of relativity the velocity c plays the part of a limiting

velocity, which can neither be reached nor exceeded

by any real body.
Of course this feature of the velocity c as a limiting

velocity also clearly follows from the equations of the

Lorentz transformation, for these become meaningless
if we choose values of v greater than c.

If, on the contrary, we had considered a metre-rod

at rest in the #-axis with respect to K, then we should

have found that the length of the rod as judged from

K would have been J~LVZ
/C

Z
; this is quite in accord

ance with the principle of relativity which forms the

basis of our considerations.

A priori it is quite clear that we must be able to

learn something about the physical behaviour of measur

ing-rods and clocks from the equations of transforma

tion, for the magnitudes x, y, z, t, are nothing more nor

less than the results of measurements obtainable by
means of measuring-rods and clocks. If we had based

our considerations on the Galilei transformation we
should not have obtained a contraction of the rod as a

consequence of its motion.

Let us now consider a seconds-clock which is per

manently situated at the origin (x =o) of K . f=o
and t =i are two successive ticks of this clock. The
first and fourth equations of the Lorentz transformation

give for these two ticks :

t = Q
and
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As judged from K, the clock is moving with the

velocity v ; as judged from this reference-body, the

time which elapses between two strokes of the clock

i

is not one second, but / t&amp;gt;

a seconds, i.e. a some-

what larger time. As a consequence of its motion

the clock goes more slowly than when at rest. Here

also the velocity c plays the part of an unattainable

limiting velocity.



XIII

THEOREM OF THE ADDITION OF VELOCITIES.
THE EXPERIMENT OF FIZEAU

NOW
in practice we can move clocks and

measuring-rods only with velocities that are

small compared with the velocity of light ; hence

we shall hardly be able to compare the results of the

previous section directly with the reality. But, on the

other hand, these results must strike you as being very

singular, and for that reason I shall now draw another

conclusion from the theory, one which can easily be

derived from the foregoing considerations, and which

has been most elegantly confirmed by experiment.
In Section VI we derived the theorem of the addition

of velocities in one direction in the form which also

results from the hypotheses of classical mechanics. This

theorem can also be deduced readily from the Galilei

transformation (Section XI). In place of the man

walking inside the carriage, we introduce a point moving
relatively to the co-ordinate system K in accordance

with the equation

x =wt .

By means of the first and fourth equations of the Galilei

transformation we can express x and t in terms of x
and t, and we then obtain

x=(v-{-w)t.
38



THE EXPERIMENT OF FIZEAU 89

This equation expresses nothing else than the law of

motion of the point with reference to the system K
(of the man with reference to the embankment). We
denote this velocity by the symbol W, and we then

obtain, as in Section VI,

. . . (A).

But we can carry out this consideration just as well

on the basis of the theory of relativity. In the equation

x =wt

we must then express x and t in terms of x and t, making
use of the first and fourth equations of the Lorentz

transformation. Instead of the equation (A) we then

obtain the equation

which corresponds to the theorem of addition for

velocities in one direction according to the theory of

relativity. The question now arises as to which of these

two theorems is the better in accord with experience. On
this point we are enlightened by a most important experi

ment which the brilliant physicist Fizeau performed more

than half a century ago, and which has been repeated
since then by some of the best experimental physicists,

so that there can be no doubt about its result. The

experiment is concerned with the following question.

Light travels in a motionless liquid with a particular

velocity w. How quickly does it travel in the direction

of the arrow in the tubeT (see the accompanying diagram,

Fig. 3) when the liquid above mentioned is flowing

through the tube with a velocity v ?
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In accordance with the principle of relativity we shall

certainly have to take for granted that the propagation

of light always takes place with the same velocity w
with respect to the liquid, whether the latter is in motion

with reference to other bodies or not. The velocity

of light relative to the liquid and the velocity of the

latter relative to the tube are thus known, and we

require the velocity of light relative to the tube.

It is clear that we have the problem of Section VI

again before us. The tube plays the part of the railway
embankment or of the co-ordinate system K, the liquid

plays the part of the carriage or of the co-ordinate

system K , and finally, the light plays the part of the

FIG. 3.

man walking along the carriage, or of the moving point

in the present section. If we denote the velocity of the

light relative to the tube by W, then this is given

by the equation (A) or (B), according as the Galilei

transformation or the Lorentz transformation corre

sponds to the facts. Experiment
l decides in favour

of equation (B) derived from the theory of relativity, and

the agreement is, indeed, very exact. According to

1 Fizeau found W= w+v( i
11, where n=- is the index of

refraction of the liquid. On the other hand, owing to the small-

ness of 5 as compared with i, we can replace (B) in the first
c

place by W= (w +v)( i - - V or to the same order of approxima

tion by w +v( i
2 j,

which agrees with Fizeau s result.
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recent and most excellent measurements by Zeeman, the

influence of the velocity of flow v on the propagation of

light is represented by formula (B) to within one per
cent.

Nevertheless we must now draw attention to the fact

that a theory of this phenomenon was given by H. A.

Lorentz long before the statement of the theory of

relativity. This theory was of a purely electrody-
namical nature, and was obtained by the use of particular

hypotheses as to the electromagnetic structure of matter.

This circumstance, however, does not in the least

diminish the conclusiveness of the experiment as a

crucial test in favour of the theory of relativity, for the

electrodynamics of Maxwell-Lorentz, on which the

original theory was based, in no way opposes the theory
of relativity. Rather has the latter been developed
from electrodynamics as an astoundingly simple com
bination and generalisation of the hypotheses, formerly

independent of each other, on which electrodynamics
was built.



XIV

THE HEURISTIC VALUE OF THE THEORY OF
RELATIVITY

OUR
train of thought in the foregoing pages can be

epitomised in the following manner. Experience
has led to the conviction that, on the one hand,

the principle of relativity holds true, and that on the

other hand the velocity of transmission of light in vacuo

has to be considered equal to a constant c. By uniting

these two postulates we obtained the law of transforma

tion for the rectangular co-ordinates x, y, z and the time

t of the events which constitute the processes of nature.

In this connection we did not obtain the Galilei trans

formation, but, differing from classical mechanics,

the Lorentz transformation.

The law of transmission of light, the acceptance of

which is justified by our actual knowledge, played an

important part in this process of thought. Once in

possession of the Lorentz transformation, however,
we can combine this with the principle of relativity,

and sum up the theory thus :

Every general law of nature must be so constituted

that it is transformed into a law of exactly the same
form when, instead of the space-time variables x, y, z, t

of the original co-ordinate system K, we introduce new

space-time variables x
, y , z

, t of a co-ordinate system
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. In this connection the relation between the

&amp;gt;rdinary
and the accented magnitudes is given by the

Lorentz transformation. Or, in brief : General laws

&amp;gt;f nature are co-variant with respect to Lorentz trans-

ormations.

This is a definite mathematical condition that the

heory of relativity demands of a natural law, and in

virtue of this, the theory becomes a valuable heuristic aid

n the search for general laws of nature. If a general

aw of nature were to be found which did not satisfy

his condition, then at least one of the two fundamental

assumptions of the theory would have been disproved,

-et us now examine what general results the latter

heory has hitherto evinced.



XV

GENERAL RESULTS OF THE THEORY

IT
is clear from our previous considerations that the

(special) theory of relativity has grown out of electro

dynamics and optics. In these fields it has not

appreciably altered the predictions of theory, but it

has considerably simplified the theoretical structure,

i.e. the derivation of laws, and what is incomparably
more important it has considerably reduced the

number of independent hypotheses forming the basis of

theory. The special theory of relativity has rendered

the Maxwell-Lorentz theory so plausible, that the latter

would have been generally accepted by physicists

even if experiment had decided less unequivocally in its

favour.

Classical mechanics required to be modified before it

could come into line with the demands of the special

theory of relativity. For the main part, however,
this modification affects only the laws for rapid motions,
in which the velocities of matter v are not very small as

compared with the velocity of light. We have experi
ence of such rapid motions only in the case of electrons

and ions
; for other motions the variations from the laws

of classical mechanics are too small to make themselves

evident in practice. We shall not consider the motion
of stars until we come to speak of the general theory of

relativity. In accordance with the theory of relativity
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ic kinetic energy of a material point of mass m is no

mger given by the well-known expression

m-.

ut by the expression
me2

&quot;Ta7~~v*V 1 -!
e&quot;

his expression approaches infinity as the velocity v

pproaches the velocity of light c. The velocity must

herefore always remain less than c, however great may
e the energies used to produce the acceleration. If

/e develop the expression for the kinetic energy in the

arm of a series, we obtain

5--- ....
8 c

2

v2

When -2 is small compared with unity, the third

&amp;lt;i these terms is always small in comparison with the

econd, which last is alone considered in classical

aechanics. The first term me2 does not contain

he velocity, and requires no consideration if we are only

leaiing with the question as to how the energy of a

&amp;gt;oint-mass depends on the velocity. We shall speak
)f its essential significance later.

The most important result of a general character to

vhich the special theory of relativity has led is concerned

vith the conception of mass. Before the advent of

elativity, physics recognised two conservation laws of

undamental importance, namely, the law of the con

servation of energy and the law of the conservation of

nass ; these two fundamental laws appeared to be quite
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independent of each other. By means of the theory of
j

relativity they have been united into one law. We shall

now briefly consider how this unification came about,

and what meaning is to be attached to it.

The principle of relativity requires that the law of the
j

conservation of energy should hold not only with re

ference to a co-ordinate system K, but also with respect

to every co-ordinate system K which is in a state of

uniform motion of translation relative to K, or, briefly,

relative to every
&quot;

Galileian
&quot;

system of co-ordinates.

In contrast to classical mechanics, the Lorentz trans

formation is the deciding factor in the transition from

one such system to another.

By means of comparatively simple considerations

we are led to draw the following conclusion from

these premises, in conjunction with the fundamental

equations of the electrodynamics of Maxwell : A body
moving with the velocity v, which absorbs 1 an amount
of energy E in the form of radiation without suffering
an alteration in velocity in the process, has, as a conse

quence, its energy increased by an amount

!?

In consideration of the expression given above for the
kinetic energy of the body, the required energy of the

body comes out to be

1 E is the energy taken up, as judged from a co-ordinate
system moving with the body.
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Thus the body has the same energy as a body of mass

-fj) moving with the velocity v. Hence we can

say : If a body takes up an amount of energy ZT
, then

its inertial mass increases by an amount ~| ; the

inertial mass of a body is not a constant, but varies

according to the change in the energy of the body.
The inertial mass of a system of bodies can even be

regarded as a measure of its energy. The law of the

conservation of the mass of a system becomes identical

with the law of the conservation of energy, and is only
valid provided that the system neither takes up nor sends

out energy. Writing the expression for the energy in

the form

I ~Jjj

c2

we see that the term we2
,
which has hitherto attracted

our attention, is nothing else than the energy possessed

by the body
* before it absorbed the energy E .

A direct comparison of this relation with experiment
is not possible at the present time, owing to the fact that

the changes in energy E to which we can subject a

system are not large enough to make themselves

perceptible as a change in the inertial mass of the

system. -f is too small in comparison with the mass
C

m, which was present before the alteration of the energy.
It is owing to this circumstance that classical mechanics

was able to establish successfully the conservation of

mass as a law of independent validity.
1 As judged from a co-ordinate system moving with the body.
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Let me add a final remark of a fundamental nature.

The success of the Faraday-Maxwell interpretation of

electromagnetic action at a distance resulted in physicists

becoming convinced that there are no such things as

instantaneous actions at a distance (not involving an

intermediary medium) of the type of Newton s law of

gravitation. According to the theory of relativity,

action at a distance with the velocity of light always
takes the place of instantaneous action at a distance or

of action at a distance with an infinite velocity of trans

mission. This is connected with the fact that the

velocity c plays a fundamental role in this theory. In

Part II we shall see in what way this result becomes

modified in the general theory of relativity.



XVI

EXPERIENCE AND THE SPECIAL THEORY OF
RELATIVITY
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latter effect manifests itself in a slight displacement

of the spectral lines of the light transmitted to us from

a fixed star, as compared with the position of the same

spectral lines when they are produced by a terrestrial

source of light (Doppler principle). The experimental

arguments in favour of the Maxwell-Lorentz theory,

which are at the same time arguments in favour of the

theory of relativity, are too numerous to be set forth

here. In reality they limit the theoretical possibilities

to such an extent, that no other theory than that of

Maxwell and Lorentz has been able to hold its own when

tested by experience.

But there are two classes of experimental facts

hitherto obtained which can be represented in the

Maxwell-Lorentz theory only by the introduction of an

auxiliary hypothesis, which in itself i.e. without

making use of the theory of relativity appears ex

traneous.

It is known that cathode rays and the so-called

/2-rays emitted by radioactive substances consist of

negatively electrified particles (electrons) of very small

inertia and large velocity. By examining the deflection

of these rays under the influence of electric and magnetic

fields, we can study the law of motion of these particles

very exactly.

In the theoretical treatment of these electrons, we are

faced with the difficulty that electrodynamic theory of

itself is unable to give an account of their nature. For

since electrical masses of one sign repel each other, the

negative electrical masses constituting the electron would

necessarily be scattered under the influence of their

mutual repulsions, unless there are forces of another

kind operating between them, the nature of which has
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litherto remained obscure to us. 1 If we now assume

:hat the relative distances between the electrical masses

Constituting the electron remain unchanged during the

motion of the electron (rigid connection in the sense of

classical mechanics), we arrive at a law of motion of the

electron which does not agree with experience. Guided

oy purely formal points of view, H. A. Lorentz was the

first to introduce the hypothesis that the particles

:onstituting the electron experience a contraction

in the direction of motion in consequence of that motion,

ithe amount of this contraction being proportional to

/ v2

the expression \f i
%.

This hypothesis, which is
c

not justifiable by any electrodynamical facts, supplies us

then with that particular law of motion which has

been confirmed with great precision in recent years.

The theory of relativity leads to the same law of

motion, without requiring any special hypothesis what

soever as to the structure and the behaviour of the

electron. We arrived at a similar conclusion in Section

XIII in connection with the experiment of Fizeau, the

result of which is foretold by the theory of relativity

without the necessity of drawing on hypotheses as to

the physical nature of the liquid.

The second class of facts to which we have alluded

has reference to the question whether or not the motion

of the earth in space can be made perceptible in terrestrial

experiments. We have already remarked in Section V
that all attempts of this nature led to a negative result.

Before the theory of relativity was put forward, it was

1 The general theory of relativity renders it likely that the

electrical masses of an electron are held together by gravita
tional forces.
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difficult to become reconciled to this negative result,

for reasons now to be discussed. The inherited

prejudices about time and space did not allow any
doubt to arise as to the prime importance of the

Galilei transformation for changing over from one

body of reference to another. Now assuming that the

Maxwell-Lorentz equations hold for a reference-body K,

we then find that they do not hold for a reference-

body K moving uniformly with respect to K, if we

assume that the relations of the Galileian transforma

tion exist between the co-ordinates of K and K . It

thus appears that of all Galileian co-ordinate systems
one (K) corresponding to a particular state of motion

is physically unique. This result was interpreted

physically by regarding K as at rest with respect to a

hypothetical aether of space. On the other hand,

all co-ordinate systems K moving relatively to K were

to be regarded as in motion with respect to the aether.

To this motion of K against the aether
(&quot;

aether-drift
&quot;

relative to K
}
were assigned the more complicated

laws which were supposed to hold relative to K .

Strictly speaking, such an aether-drift ought also to be

assumed relative to the earth, and for a long time the

efforts of physicists were devoted to attempts to detect

the existence of an aether-drift at the earth s surface.

In one of the most notable of these attempts Michelson

devised a method which appears as though it must be

decisive. Imagine two mirrors so arranged on a rigid

body that the reflecting surfaces face each other. A
ray of light requires a perfectly definite time T to pass
from one mirror to the other and back again, if the whole

system be at rest with respect to the aether. It is found

by calculation, however, that a slightly different time
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is required for this process, if the body, together with

:he mirrors, be moving relatively to the aether. And
another point : it is shown by calculation that for

i given velocity v with reference to the aether, this

ime T is different when the body is moving perpen-

licularly to the planes of the mirrors from that resulting

vhen the motion is parallel to these planes. Although
he estimated difference between these two times is

exceedingly small, Michelson and Morley performed an

experiment involving interference in which this difference

should have been clearly detectable. But the experi
ment gave a negative result a fact very perplexing

:o physicists. Lorentz and FitzGerald rescued the

:heory from this difficulty by assuming that the motion

)f the body relative to the aether produces a contraction

Df the body in the direction of motion, the amount of con

traction being just sufficient to compensate for the differ-

snce in time mentioned above. Comparison with the

liscussion in Section XII shows that also from the stand

point of the theory of relativity this solution of the

difficulty was the right one. But on the basis of the

theory of relativity the method of interpretation is

incomparably more satisfactory. According to this

theory there is no such thing as a
&quot;

specially favoured
&quot;

(unique) co-ordinate system to occasion the introduction

of the aether-idea, and hence there can be no aether-drift,

nor any experiment with which to demonstrate it.

Here the contraction of moving bodies follows from

the two fundamental principles of the theory without

the introduction of particular hypotheses ;
and as the

prime factor involved in this contraction we find, not

the motion in itself, to which we cannot attach any

meaning, but the motion with respect to the body of
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reference chosen in the particular case in point. Thus

for a co-ordinate system moving with the earth the

mirror system of Michelson and Morley is not shortened,

but it is shortened for a co-ordinate S} stein which is at

rest relatively to the sun.



XVII

MINKOWSKFS FOUR-DIMENSIONAL SPACE

THE
non-mathematician is seized by a mysterious

shuddering when he hears of
&quot;

four-dimensional&quot;

tilings, by a feeling not unlike that awakened by
thoughts of the occult. And yet there is no more

common-place statement than that the world in which

we live is a four-dimensional space-time continuum.

Space is a three-dimensional continuum. By this

we mean that it is possible to describe the position of a

point (at rest) by means of three numbers (co-ordinates)

x, y, z, and that there is an indefinite number of points
in the neighbourhood of this one, the position of which

can be described by co-ordinates such as xlf ylt
z
lt
which

may be as near as we choose to the respective values of

the co-ordinates x, y, z of the first point. In virtue of the

latter property we speak of a
&quot;

continuum,&quot; and owing
to the fact that there are three co-ordinates we speak of

it as being
&quot;

three-dimensional.&quot;

Similarly, the world of physical phenomena which was

briefly called
&quot;

world
&quot;

by Minkowski is naturally

four-dimensional in the space-time sense. For it is

composed of individual events, each of which is de

scribed by four numbers, namely, three space

co-ordinates x, y, z and a time co-ordinate, the time-

value t. The &quot;

world
&quot;

is in this sense also a continuum ;

for to every event there are as many
&quot;

neighbouring
&quot;

55
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events (realised or at least thinkable) as we care to

choose, the co-ordinates x
lt ylt

z
lt ^ of which differ

by an indefinitely small amount from those of the

event x, y, z, t originally considered. That we have not

been accustomed to regard the world in this sense as a

four-dimensional continuum is due to the fact that in

physics, before the advent of the theory of relativity,

time played a different and more independent role, as

compared with the space co-ordinates. It is for this

reason that we have been in the habit of treating time

as an independent continuum. As a matter of fact,

according to classical mechanics, time is absolute,

i.e. it is independent of the position and the condition

of motion of the system of co-ordinates. We see this

expressed in the last equation of the Galileian trans

formation (t =t}.

The four-dimensional mode of consideration of the
&quot;

world
&quot;

is natural on the theory of relativity, since

according to this theory time is robbed of its independ
ence. This is shown by the fourth equation of the

Lorentz transformation :

Moreover, according to this equation the time difference

A of two events with respect to K does not in general

vanish, even when the time difference A2 of the same
events with reference to K vanishes. Pure

&quot;

space-
distance

&quot;

of two events with respect to K results in
&quot;

time-distance
&quot;

of the same events with respect to K .

But the discovery of Minkowski, which was of import-
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ance for the formal development of the theory of re

lativity, does not lie here. It is to be found rather in

the fact of his recognition that the four-dimensional

space-time continuum of the theory of relativity, in its

most essential formal properties, shows a pronounced

relationship to the three-dimensional continuum of

Euclidean geometrical space.
1 In order to give due

prominence to this relationship, however, we must

replace the usual time co-ordinate t by an imaginary

magnitude \l-i.ct proportional to it. Under these

conditions, the natural laws satisfying the demands of

the (special) theory of relativity assume mathematical

forms, in which the time co-ordinate plays exactly the

same role as the three space co-ordinates. Formally,
these four co-ordinates correspond exactly to the three

space co-ordinates in Euclidean geometry. It must be

clear even to the non-mathematician that, as a conse

quence of this purely formal addition to our knowledge,
the theory perforce gained clearness in no mean
measure.

These inadequate remarks can give the reader only a

vague notion of the important idea contributed by Min-

kowski. Without it the general theory of relativity, of

which the fundamental ideas are developed in the follow

ing pages, would perhaps have got no farther than its

long clothes. Minkowski s work is doubtless difficult of

access to anyone inexperienced in mathematics, but

since it is not necessary to have a very exact grasp of

this work in order to understand the fundamental ideas

of either the special or the general theory of relativity,

I shall at present leave it here, and shall revert to it

only towards the end of Part II.

1 Cf . the somewhat more detailed discussion in Appendix II.





PART II

THE GENERAL THEORY OF RELATIVITY

XVIII

SPECIAL AND GENERAL PRINCIPLE OF
RELATIVITY

THE
basal principle, which was the pivot of all

our previous considerations, was the special

principle of relativity, i.e. the principle of the

physical relativity of all uniform motion. Let us once

more analyse its meaning carefully.

It was at all times clear that, from the point of view

of the idea it conveys to us, every motion must only
be considered as a relative motion. Returning to the

illustration we have frequently used of the embankment
and the railway carriage, we can express the fact of the

motion here taking place in the following two forms,

both of which are equally justifiable :

(a) The carriage is in motion relative to the embank
ment.

(b) The embankment is in motion relative to the

carriage.

In (a) the embankment, in (b) the carriage, serves as

the body of reference in our statement of the motion

taking place. If it is simply a question of detecting
59
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or of describing the motion involved, it is in principle

immaterial to what reference-body we refer the motion.

As already mentioned, this is self-evident, but it must

not be confused with the much more comprehensive

statement called
&quot;

the principle of relativity,&quot; which

we have taken as the basis of our investigations.

The principle we have made use of not only maintains

that we may equally well choose the carriage or the

embankment as our reference-body for the description

of any event (for this, too, is self-evident) . Our principle

rather asserts what follows : If we formulate the general

laws of nature as they are obtained from experience,

by making use of

(a) the embankment as reference-body,

(b) the railway carriage as reference-body,

then these general laws of nature (e.g. the laws of

mechanics or the law of the propagation of light in vacua)

have exactly the same form in both cases. This can

also be expressed as follows : For the physical descrip
tion of natural processes, neither of the reference-

bodies K, K is unique (lit.

&quot;

specially marked out
&quot;)

as

compared with the other. Unlike the first, this latter

statement need not of necessity hold a priori ; it is

not contained in the conceptions of
&quot;

motion
&quot;

and
&quot;

reference-body
&quot;

and derivable from them ; only

experience can decide as to its correctness or incor

rectness.

Up to the present, however, we have by no means
maintained the equivalence of all bodies of reference K
in connection with the formulation of natural laws.

Our course was more on the following lines. In the

first place, we started out from the assumption that

there exists a reference-body K, whose condition of
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motion is such that the Galileian law holds with respect

to it : A particle left to itself and sufficiently far removed
from all other particles moves uniformly in a straight

line. With reference to K (Galileian reference-body) the

laws of nature were to be as simple as possible. But

in addition to K, all bodies of reference K should be

given preference in this sense, and they should be exactly

equivalent to K for the formulation of natural laws,

provided that they are in a state of uniform rectilinear

and non-rotary motion with respect to K ;
all these

bodies of reference are to be regarded as Galileian

reference-bodies. The validity of the principle of

relativity was assumed only for these reference-bodies,

but not for others (e.g. those possessing motion of a

different kind). In this sense we speak of the special

principle of relativity, or special theory of relativity.

In contrast to this we wish to understand by the
&quot;

general principle of relativity
&quot;

the following state

ment : All bodies of reference K, K , etc., are equivalent
for the description of natural phenomena (formulation of

the general laws of nature), whatever may be their

state of motion. But before proceeding farther, it

ought to be pointed out that this formulation must be

replaced later by a more abstract one, for reasons which

will become evident at a later stage.

Since the introduction of the special principle of

relativity has been justified, every intellect which

strives after generalisation must feel the temptation
to venture the step towards the general principle of

relativity. But a simple and apparently quite reliable

consideration seems to suggest that, for the present
at any rate, there is little hope of success in such an

attempt. Let us imagine ourselves transferred to our
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old friend the railway carriage, which is travelling at a

uniform rate. As long as it is moving uniformly, the

occupant of the carriage is not sensible of its motion,

and it is for this reason that he can without reluctance

interpret the facts of the case as indicating that the

carriage is at restobut the embankment in motion.

Moreover, according to the special principle of relativity,

this interpretation is quite justified also from a physical

point of view.

If the nlotion of the carriage is now changed into a

non-uniform; motion, as for instance by a powerful

application of the brakes, then the occupant of the

carriage experiences a correspondingly powerful jerk

forwards. The retarded motion is manifested in the

mechanical behaviour of bodies relative to the person
in the railway carriage. The mechanical behaviour is

different from that of the case previously considered,

and for this reason it would appear to be impossible
that the same mechanical laws hold relatively to the non-

uniformly moving carriage, as hold with reference to the

carriage when at rest or in uniform motion. At all

events it is clear that the Galileian law does not hold

with respect to the non-uniformly moving carriage.

Because of this, we feel compelled at the present juncture
to grant a kind of absolute physical reality to non-

uniform motion, in opposmpn to the general principle
of relativity. But in what follows we shall soon see

that this conclusion cannot be maintained.



XIX

THE GRAVITATIONAL FIELD

IF
we pick up a stone and then let it go, why does it

fall to the ground ?
&quot;

The usual answer to this

question is^f
*
Because it is attracted by the earth.&quot;

Modern physics formulates the answer rather differently

for the following reason. As a result of the more careful

study of electromagnetic phenomena, we have come

to regard action at a distance as a process impossible

without the intervention of some intermediary medium.

If, for instance, a mag^lt attracts a piece of iron, we
cannot be content to regard this as meaning that the

magnet acts directly op the iron through the inter

mediate empty space, tout we are constrained to im

agine after the manner of Faraday that the magnet

always calls into being something physically real in

the space around it, that something being what we call a
&quot;

magnetic field.&quot; In its turn this magnetic field

operates on the piece of iron, so that the latter strives

to move towards the magnet. We shall not discuss

here the justification for this incidental conception,

which is indeed a somewhat arbitrary one. We shall

only mention that with its aid electromagnetic pheno
mena can be theoretically represented much more

satisfactorily than without it, and this applies partic

ularly to the transmission of electromagnetic waves.
63
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The effects of gravitation also are regarded in an ana

logous manner.

The action of the earth on the stone takes place in

directly. The earth produces in its surroundings a

gravitational field, which acts on the stone and produces
its motion of fall. As we know from experience, the

intensity of the action on a body diminishes according

to a quite definite law, as we proceed farther and farther

away from the earth. From our point of view this

means : The law governing the properties of the gravita

tional field in space must be a perfectly definite one, in

order correctly to represent the diminution of gravita
tional action with the distance from operative bodies.

It is something like this : The body (e.g. the earth) pro
duces a field in its immediate neighbourhood directly ;

the intensity and direction of the field at points farther

removed from the body are thence determined by
the law which governs the properties in space of the

gravitational fields themselves.

In contrast to electric and magnetic fields, the gravita
tional field exhibits a most remarkable property, which

is of fundamental importance for what follows. Bodies

which are moving under the sole influence of a gravita
tional field receive an acceleration, which does not in the

least depend either on the material or on the physical
state of the body. For instance, a piece of lead and
a piece of wood fall in exactly the same manner in a

gravitational field (in vacuo), when they start off from

rest or with the same initial velocity. This law, which
holds most accurately, can be expressed in a different ^
form in the light of the following consideration.

According to Newton s law of motion, we have

(Force) =(inertial mass) X (acceleration),
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where the
&quot;

inertial mass
&quot;

is a characteristic constant

of the accelerated body. If now gravitation is the

cause of the acceleration, we then have

(Force) = (gravitational mass) X (intensity of the

gravitational field),

where the
&quot;

gravitational mass
&quot;

is likewise a character

istic constant for the body. From these two relations

follows :

(gravitational mass)
(acceleration)= ^^ mass)

X (intensity of the

gravitational field).

If now, as we find from experience, the acceleration is

to be independent of the nature and the condition of the

body and always the same for a given gravitational

field, then the ratio of the gravitational to the inertial

mass must likewise be the same for all bodies. By a

suitable choice of units we can thus make this ratio

equal to unity. We then have the following law :

The gravitational mass of a body is equal to its inertial

mass.

It is true that this important law had hitherto been

recorded in mechanics, but it had not been interpreted.

A satisfactory interpretation can be obtained only if we

recognise the following fact : The same quality of a

body manifests itself according to circumstances as
&quot;

inertia&quot; or as
&quot;

weight
&quot;

(lit.

&quot;

heaviness
&quot;).

In the

following section we shall show to what extent this is

actually the case, and how this question is connected

with the general postulate of relativity.



XX

THE EQUALITY OF INERTIAL AND GRAVITA
TIONAL MASS AS AN ARGUMENT FOR THE
GENERAL POSTULATE OF RELATIVITY

WE imagine a large portion of empty space, so far

removed from stars and other appreciable

masses, that we have before us approximately
the conditions required by the fundamental law of Galilei.

It is then possible to choose a Galileian reference-body for

this part of space (world), relative to which points at

rest remain at rest and points in motion continue per

manently in uniform rectilinear motion. As reference-

body let us imagine a spacious chest resembling a room

with an observer inside who is equipped with apparatus.
Gravitation naturally does not exist for this observer.

He must fasten himself with strings to the floor,

otherwise the slightest impact against the floor will

cause him to rise slowly towards the ceiling of the

room.

To the middle of the lid of the chest is fixed externally
a hook with rope attached, and now a

&quot;

being
&quot;

(what
kind of a being is immaterial to us) begins pulling at

this with a constant force. The chest together with the

observer then begin to move &quot;

upwards
&quot;

with a

uniformly accelerated motion. In course of time their

velocity will reach unheard-of values provided that
66
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we are viewing all this from another reference-body
which is not being pulled with a rope.

But how does the man in the chest regard the process ?

The acceleration of the chest will be transmitted to him

by the reaction of the floor of the chest. He must

therefore take up this pressure by means of his legs if

he does not wish to be laid out full length on the floor.

He is then standing in the chest in exactly the same way
as anyone stands in a room of a house on our earth.

If he release a body which he previously had in his

hand, the acceleration of the chest will no longer be

transmitted to this body, and for this reason the body
will approach the floor of the chest with an accelerated

relative motion. The observer will further convince

himself that the acceleration of the body towards the floor

of the chest is always of the same magnitude, whatever

kind of body he may happen to use for the experiment.

Relying on his knowledge of the gravitational field

(as it was discussed in the preceding section), the man
in the chest will thus come to the conclusion that he

and the chest are in a gravitational field which is constant

with regard to time. Of course he will be puzzled for

a moment as to why the chest does not fall, in this

gravitational field. Just then, however, he discovers

the hook in the middle of the lid of the chest and the

rope which is attached to it, and he consequently comes

to the conclusion that the chest is suspended at rest in

the gravitational field.

Ought we to smile at the man and say that he errs

in his conclusion ? I do not believe we ought to if we
wish to remain consistent ;

we must rather admit that

his mode of grasping the situation violates neither reason

nor known mechanical laws. Even though it is being
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accelerated with respect to the
&quot;

Galileian space
&quot;

first considered, we can nevertheless regard the chest

as being at rest. We have thus good grounds for

extending the principle of relativity to include bodies

of reference which are accelerated with respect to each

other, and as a result we have gained a powerful argument
for a generalised postulate of relativity.

We must note carefully that the possibility of this

mode of interpretation rests on the fundamental

property of the gravitational field of giving all bodies

the same acceleration, or, what comes to the same thing,

on the law of the equality of inertial and gravitational

mass. If this natural law did not exist, the man in

the accelerated chest would not be able to interpret

the behaviour of the bodies around him on the supposi
tion of a gravitational field, and he would not be justified

on the grounds of experience in supposing his reference-

body to be
&quot;

at rest.&quot;

Suppose that the man in the chest fixes a rope to the

inner side of the lid, and that he attaches a body to the

free end of the rope. The result of this will be to stretch

the rope so that it will hang
&quot;

vertically
&quot;

downwards.

If we ask for an opinion of the cause of tension in the

rope, the man in the chest will say :

&quot; The suspended

body experiences a downward force in the gravitational

field, and this is neutralised by the tension of the rope ;

what determines the magnitude of the tension of the

rope is the gravitational mass of the suspended body.&quot;

On the other hand, an observer who is poised freely in

space will interpret the condition of things thus :

&quot; The

rope must perforce take part in the accelerated motion

of the chest, and it transmits this motion to the body
attached to it. The tension of the rope is just large
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enough to effect the acceleration of the body. That

which determines the magnitude of the tension of the

rope is the inertial mass of the body.&quot; Guided by
this example, we see that our extension of the principle

of relativity implies the necessity of the law of the

equality of inertial and gravitational mass. Thus we
have obtained a physical interpretation of this law.

From our consideration of the accelerated chest we
see that a general theory of relativity must yield im

portant results on the laws of gravitation. In point of

fact, the systematic pursuit of the general idea of re

lativity has supplied the laws satisfied by the gravita
tional field. Before proceeding farther, however, I

must warn the reader against a misconception suggested

by these considerations. A gravitational field exists

for the man in the chest, despite the fact that there was

no such field for the co-ordinate system first chosen.

Now we might easily suppose that the existence of a

gravitational field is always only an apparent one. We
might also think that, regardless of the kind of gravita

tional field which may be present, we could always
choose another reference-body such that no gravitational

field exists with reference to it. This is by no means

true for all gravitational fields, but only for those of

quite special form. It is, for instance, impossible to

choose a body of reference such that, as judged from it,

the gravitational field of the earth (in its entirety)

vanishes.

We can now appreciate why that argument is not

convincing, which we brought forward against the

general principle of relativity at the end of Section XVIII.

It is certainly true that the observer in the railway

carriage experiences a jerk forwards as a result of the
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application of the brake, and that he recognises in this the

non-uniformity of motion (retardation) of the carriage.

But he is compelled by nobody to refer this jerk to a
&quot;

real
&quot;

acceleration (retardation) of the carriage. He

might also interpret his experience thus :

&quot;

My body of

reference (the carriage) remains permanently at rest.

With reference to it, however, there exists (during the

period of application of the brakes) a gravitational

field which is directed forwards and which is variable

with respect to time. Under the influence of this field,

the embankment together with the earth moves non-

uniformly in such a manner that their original velocity
in the backwards direction is continuously reduced.&quot;



XXI

IN WHAT RESPECTS ARE THE FOUNDATIONS
OF CLASSICAL MECHANICS AND OF THE
SPECIAL THEORY OF RELATIVITY UN
SATISFACTORY ?

WE have already stated several times that

classical mechanics starts out from the follow

ing law : Material particles sufficiently far

removed from other material particles continue to

move uniformly in a straight line or continue in a

state of rest. We have also repeatedly emphasised
that this fundamental law can only be valid for

bodies of reference K which possess certain unique
states of motion, and which are in uniform translational

motion relative to each other. Relative to other refer

ence-bodies K the law is not valid. Both in classical

mechanics and in the special theory of relativity we
therefore differentiate between reference-bodies K
relative to which the recognised

&quot;

laws of nature
&quot;

can

be said to hold, and reference-bodies K relative to which

these laws do not hold.

But no person whose mode of thought is logical can

rest satisfied with this condition of things. He asks :

&quot; How does it come that certain reference-bodies (or

their states of motion) are given priority over other

reference-bodies (or their states of motion) ? What is
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the reason for this preference ? In order to show clearly

what I mean by this question, I shall make use of a

comparison.
I am standing in front of a gas range. Standing

alongside of each other on the range are two pans so

much alike that one may be mistaken for the other.

Both are half full of water. I notice that steam is being

emitted continuously from the one pan, but not from the

other. I am surprised at this, even if I have never seen

either a gas range or a pan before. But if I now notice

a luminous something of bluish colour under the first

pan but not under the other, I cease to be astonished,

even if I have never before seen a gas flame. For I

can only say that this bluish something will cause the

emission of the steam, or at least possibly it may do so.

If, however, I notice the bluish something in neither

case, and if I observe that the one continuously emits

steam whilst the other does not, then I shall remain

astonished and dissatisfied until I have discovered

some circumstance to which I can attribute the different

behaviour of the two pans.

Analogously, I seek in vain for a real something in

classical mechanics (or in the special theory of rela

tivity) to which I can attribute the different behaviour

of bodies considered with respect to the reference-

systems K and K .

1 Ne,\vton saw this objection and

attempted to invalidate it, but without success. But
E. Mach recognised it most clearly of all, and because

of this objection he claimed that mechanics must be

1 The objection is of importance more especially when the state

of motion of the reference-body is of such a nature that it does
not require any external agency for its maintenance, e.g. in

the case when the reference-body is rotating uniformly.
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placed on a new basis. It can only be got rid of by
means of a physics which is conformable to the general

principle of relativity, since the equations of such a

theory hold for every body of reference, whatever

may be its state of motion.



XXII

A FEW INFERENCES FROM THE GENERAL
PRINCIPLE OF RELATIVITY

THE
considerations of Section XX show that the

general principle of relativity puts us in a position

to derive properties of the gravitational field in a

purely theoretical manner. Let us suppose, for instance,

that we know the space-time
&quot;

course
&quot;

for any natural

process whatsoever, as regards the manner in which it

takes place in the Galileian domain relative to a

Galileian body of reference K. By means of purely

theoretical operations (i.e. simply by calculation) we are

then able to find how this known natural process

appears, as seen from a reference-body K which is

accelerated relatively to K. But since a gravitational

field exists with respect to this new body of reference

K
, our consideration also teaches us how the gravita

tional field influences the process studied.

For example, we learn that a body which is in a state

of uniform rectilinear motion with respect to K (in

accordance with the law of Galilei) is executing an

accelerated and in general curvilinear motion with

respect to the accelerated reference-body K (chest).

This acceleration or curvature corresponds to the in

fluence on the moving body of the gravitational field

prevailing relatively to K . It is known that a gravita
tional field influences the movement of bodies in this
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way, so that our consideration supplies us with nothing

essentially new.

However, we obtain a new result of fundamental

importance when we carry out the analogous considera

tion for a ray of light. With respect to the Galileian

reference-body K, such a ray of light is transmitted

rectilinearly with the velocity c. It can easily be shown
that the path of the same ray of light is no longer a

straight line when we consider it with reference to the

accelerated chest (reference-body K ). From this we

conclude, that, in general, rays of light are propagated

curvilinearly in gravitational fields. In two respects

this result is of great importance.
In the first place, it can be compared with the reality.

Although a detailed examination of the question shows

that the curvature of light rays required by the general

theory of relativity is only exceedingly small for the

gravitational fields at our disposal in practice, its esti

mated magnitude for light rays passing the sun at

grazing incidence is nevertheless 1*7 seconds of arc.

This ought to manifest itself in the following way.
As seen from the earth, certain fixed stars appear to be

in the neighbourhood of the sun, and are thus capable
of observation during a total eclipse of the sun. At such

times, these stars ought to appear to be displaced

outwards from the sun by an amount indicated above,

as compared with their apparent position in the sky
when the sun is situated at another part of the heavens.

The examination of the correctness or otherwise of this

deduction is a problem of the greatest importance, the

early solution of which is to be expected of astronomers. 1

1 By means of the star photographs of two expeditions equipped
by a Joint Committee of the Royal and Royal Astronomical
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In the second place our result shows that, according
to the general theory of relativity, the law of the con

stancy of the velocity of light in vacuo, which consti
tutes one of the two fundamental assumptions in the

special theory of relativity and to which we have
already frequently referred, cannot claim any unlimited

validity. A curvature of rays of light can only take

place when the velocity of propagation of light varies
with position. Now we might think that as a conse

quence of this, the special theory of relativity and with
it the whole theory of relativity would be laid in the
dust. But in reality this is not the case. We can only
conclude that the special theory of relativity cannot
claim an unlimited domain of validity ; its results
hold only so long as we are able to disregard the in
fluences of gravitational fields on the phenomena
(e.g. of light).

Since it has often been contended by opponents of
the theory of relativity that the special theory of

relativity is overthrown by the general theory of &quot;rela

tivity, it is perhaps advisable to make the facts of the
case clearer by means of an appropriate comparison.
Before the development of electrodynamics the laws
of electrostatics were looked upon as the laws of

electricity. At the present time we know that
electric fields can be derived correctly from electro
static considerations only for the case, which is never

strictly realised, in which the electrical masses are quite
at rest relatively to each other, and to the co-ordinate

system. Should we be justified in saying that for this

Societies, the existence of the deflection of light demanded by
theory was confirmed during the solar eclipse of 20th Mav IQIQ
(Cf. Appendix III.)



INFERENCES FROM RELATIVITY 77

reason electrostatics is overthrown by the field-equa

tions of Maxwell in electrodynamics ? Not in the least.

Electrostatics is contained in electrodynamics as a

limiting case ; the laws of the latter lead directly to

those of the former for the case in which the fields are

invariable with regard to time. No fairer destiny

could be allotted to any physical theory, than that it

should of itself point out the way to the introduction

of a more comprehensive theory, in which it lives on

as a limiting case.

In the example of the transmission of light just dealt

with, we have seen that the general theory of relativity

enables us to derive theoretically the influence of a

gravitational field on the course of natural processes,

the laws of which are already known when a gravita

tional field is absent. But the most attractive problem,

to the solution of which the general theory of relativity

supplies the key, concerns the investigation of the laws

satisfied by the gravitational field itself. Let us consider

this for a moment.

We are acquainted with space-time domains which

behave (approximately) in a
&quot;

Galileian
&quot;

fashion under

suitable choice of reference-body, i.e. domains in which

gravitational fields are absent. If we nov -efer such

a domain to a reference-body K possessing any kind

of motion, then relative to K there exists a gravita

tional field which is variable with respect to space and

time.1 The character of this field will of course depend

on the motion chosen for K . According to the general

theory of relativity, the general law oi the gravitational

field must be satisfied for all gravitational fields obtain-

1 This follows from a generalisation of the discussion in Section

XX.
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able in this way. Even though by no means all gravita

tional fields can be produced in this way, yet we may
entertain the hope that the general law of gravitation

will be derivable from such gravitational fields of a

special kind. This hope has been realised in the most

beautiful manner. But between the clear vision of

this goal and its actual realisation it was necessary to

surmount a serious difficulty, and as this lies deep at

the root of things, I dare not withhold it from the reader.

We require to extend our ideas of the space-time con

tinuum still farther.



XXIII

BEHAVIOUR OF CLOCKS AND MEASURING-RODS
ON A ROTATING BODY OF REFERENCE

HITHERTO
I have purposely refrained from

speaking about the physical interpretation of

space- and time-data in the case of the general

theory of relativity. As a consequence, I am guilty of a

certain slovenliness of treatment, which, as we know
from the special theory of relativity, is far from being

unimportant and pardonable. It is now high time that

we remedy this defect; but I would mention at the

outset, that this matter lays no small claims on the

patience and on the power of abstraction of the reader.

We start off again from quite special cases, which we
have frequently used before. Let us consider a space-

time domain in which no gravitational field exists

relative to a reference-body K whose state of motion

has been suitably chosen. K is then a Galileian refer

ence-body as regards the domain considered, and the

results of the special theory of relativity hold relative

to K. Let us suppose the same domain referred to a

second body of reference K , which is rotating uniformly
with respect to K. In order to fix our ideas, we shall

imagine K to be in the form of a plane circular disc,

which rotates uniformly in its own plane about its

centre. An observer who is sitting eccentrically on the
79
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disc K is sensible of a force which acts outwards in a

radial direction, and which would be interpreted as an

effect of inertia (centrifugal force) by an observer who
was at rest with respect to the original reference-body K.

But the observer on the disc may regard his disc as a

reference-body which is &quot;at rest
&quot;

; on the basis of the

general principle of relativity he is justified in doing this.

The force acting on himself, and in fact on all other

bodies which are at rest relative to the disc, he regards

as the effect of a gravitational field. Nevertheless,

the space-distribution of this gravitational field is of a

kind that would not be possible on Newton s theory of

gravitation.
1 But since the observer believes in the

general theory of relativity, this does not disturb him ;

he is quite in the right when he believes that a general

law of gravitation can be formulated a law which not

only explains the motion of the stars correctly, but

also the field of force experienced by himself.

The observer performs experiments on his circular

disc with clocks and measuring-rods. In doing so, it

is his intention to arrive at exact definitions for the

signification of time- and space-data with reference

to the circular disc K , these definitions being based on

his observations. What will be his experience in this

enterprise ?

To start with, he places one of two identically con

structed clocks at the centre of the circular disc, and the

other on the edge of the disc, so that they are at rest

relative to it. We now ask ourselves whether both

clocks go at the same rate from the standpoint of the

1 The field disappears at the centre of the disc and increases

proportionally to the distance from the centre as we proceed
outwards.
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non-rotating Galileian reference-body K. As judged
from this body, the clock at the centre of the disc has

no velocity, whereas the clock at the edge of the disc

is in motion relative to K in consequence of the rotation.

According to a result obtained in Section XII, it follows

that the latter clock goes at a rate permanently slower

than that of the clock at the centre of the circular disc,

i.e. as observed from K. It is obvious that the same effect

would be noted by an observer whom we will imagine

sitting alongside his clock at the centre of the circular

disc. Thus on our circular disc, or, to make the case

more general, in every gravitational field, a clock will

go more quickly or less quickly, according to the position

in which the clock is situated (at rest). For this reason

it is not possible to obtain a reasonable definition of time

with the aid of clocks which are arranged at rest with

respect to the body of reference. A similar difficulty

presents itself when we attempt to apply our earlier

definition of simultaneity in such a case, but I do not

wish to go any farther into this question.

Moreover, at this stage the definition of the space

co-ordinates also presents insurmountable difficulties.

If the observer applies his standard measuring-rod

(a rod which is short as compared with the radius of

the disc) tangentially to the edge of the disc, then, as

judged from the Galileian system, the length of this rod

will be less than I, since, according to Section XII, moving
bodies suffer a shortening in the direction of the motion.

On the other hand, the measuring-rod will not experience

a shortening in length, as judged from K, if it is applied

to the disc in the direction of the radius. If, then, the

observer first measures the circumference of the disc

with his measuring-rod and then the diameter of the

6
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disc, on dividing the one by the other, he will not obtain

as quotient the familiar number 77=3-14 . . ., but

a larger number, 1 whereas of course, for a disc which is

at rest with respect to K, this operation would yield IT

exactly. This proves that the propositions of Euclidean

geometry cannot hold exactly on the rotating disc, nor

in general in a gravitational field, at least if we attribute

the length i to the rod in all positions and in every
orientation. Hence the idea of a straight line also loses

its meaning. We are therefore not in a position to

define exactly the co-ordinates x, y, z relative to the

disc by means of the method used in discussing the

special theory, and as long as the co-ordinates and times

of events have not been defined, we cannot assign an

exact meaning to the natural laws in which these occur.

Thus all our previous conclusions based on general

relativity would appear to be called in question. In

reality we must make a subtle detour in order to be

able to apply the postulate of general relativity ex

actly. I shall prepare the reader for this in the

following paragraphs.

1 Throughout this consideration we have to use the Galileian

(non-rotating) system K as reference-body, since we may only
assume the validity of the results of the special theory of rela

tivity relative to K (relative to K a gravitational field prevails).



XXIV

EUCLIDEAN AND NON-EUCLIDEAN CONTINUUM

THE
surface of a marble table is spread out in front

of me. I can get from any one point on this

table to any other point by passing continuously
from one point to a

&quot;

neighbouring
&quot;

one, and repeating
this process a (large) number of times, or, in other words,

by going from point to point without executing
&quot;

jumps.&quot;

I am sure the reader will appreciate with sufficient

clearness what I mean here by
&quot;

neighbouring
&quot;

and by
&quot;

jumps
&quot;

(if he is not too pedantic). We express this

property of the surface by describing the latter as a

continuum.

Let us now imagine that a large number of little rods

of equal length have been made, their lengths being
small compared with the dimensions of the marble

slab. When I say they are of equal length, I mean that

one can be laid on any other without the ends over

lapping. We next lay four of these little rods on the

marble slab so that they constitute a quadrilateral

figure (a square), the diagonals of which are equally

long. To ensure the equality of the diagonals, we make
use of a little testing-rod. To this square we add

similar ones, each of which has one rod in common
with the first. We proceed in like manner with each of

these squares until finally the whole marble slab is

83
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laid out with squares. The arrangement is such, that

each side of a square belongs to two squares and each

corner to four squares.

It is a veritable wonder that we can carry out this

business without getting into the greatest difficulties.

We only need to think of the following. If at any
moment three squares meet at a corner, then two sides

of the fourth square are already laid, and, as a conse

quence, the arrangement of the remaining two sides of

the square is already completely determined. But I

am now no longer able to adjust the quadrilateral so

that its diagonals may be equal. If they are equal
of their own accord, then this is an especial favour

of the marble slab and of the little rods, about which I

can only be thankfully surprised. We must needs

experience many such surprises if the construction is to

be successful.

If everything has really gone smoothly, then I say
that the points of the marble slab constitute a Euclidean

continuum with respect to the little rod, which has been

used as a
&quot;

distance
&quot;

(line-interval). By choosing
one corner of a square as

&quot;

origin,&quot; I can characterise

every other corner of a square with reference to this

origin by means of two numbers. I only need state

how many rods I must pass over when, starting from the

origin, I proceed towards the
&quot;

right
&quot;

and then
&quot;

up
wards,&quot; in order to arrive at the corner of the square
under consideration. These two numbers are then the
&quot;

Cartesian co-ordinates
&quot;

of this corner with reference

to the
&quot;

Cartesian co-ordinate system&quot; which is deter

mined by the arrangement of little rods.

By making use of the following modification of this

abstract experiment, we recognise that there must also
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be cases in which the experiment would be unsuccessful.

We shall suppose that the rods
&quot;

expand
&quot;

by an amount

proportional to the increase of temperature. We heat

the central part of the marble slab, but not the peri

phery, in which case two of our little rods can still be

brought into coincidence at every position on the table.

But our construction of squares must necessarily come
into disorder during the heating, because the little rods

on the central region of the table expand, whereas

those on the outer part do not.

With reference to our little rods denned as unit

lengths the marble slab is no longer a Euclidean con

tinuum, and we are also no longer in the position of de

nning Cartesian co-ordinates directly with their aid,

since the above construction can no longer be carried

out. But since there are other things which are not

influenced in a similar manner to the little rods (or

perhaps not at all) by the temperature of the table, it is

possible quite naturally to maintain the point of view

that the marble slab is a
&quot;

Euclidean continuum.&quot;

This can be done in a satisfactory manner by making a

more subtle stipulation about the measurement or the

comparison of lengths.

But if rods of every kind (i.e. of every material) were

to behave in the same way as regards the influence of

temperature when they are on the variably heated

marble slab, and if we had no other means of detecting

the effect of temperature than the geometrical be

haviour of our rods in experiments analogous to the one

described above, then our best plan would be to assign

the distance one to two points on the slab, provided that

the ends of one of our rods could be made to coincide

with these two points ;
for how else should we define
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the distance without our proceeding being in the highest

measure grossly arbitrary ? The method of Cartesian

co-ordinates must then be discarded, and replaced by
another which does not assume the validity of Euclidean

geometry for rigid bodies.1 The reader will notice that

the situation depicted here corresponds to the one

brought about by the general postulate of relativity

(Section XXIII).

1 Mathematicians have been confronted with our problem in the

following form. If we are given a surface (e.g. an ellipsoid) in

Euclidean three-dimensional space, then there exists for this

surface a two-dimensional geometry, just as much as for a plane
surface. Gauss undertook the task of treating this two-dimen
sional geometry from first principles, without making use of the

fact that the surface belongs to a Euclidean continuum of

three dimensions. If we imagine constructions to be made with

rigid rods in the surface (similar to that above with the marble

slab), we should find that different laws hold for these from those

resulting on the basis of Euclidean plane geometry. The surface

is not a Euclidean continuum with respect to the rods, and we
cannot define Cartesian co-ordinates in the surface. Gauss

indicated the principles according to which we can treat the

geometrical relationships in the surface, and thus pointed out

the way to the method of Riemann of treating multi-dimen

sional, non-Euclidean conlinua. Thus it is that mathematicians

long ago solved the formal problems to which we are led by the

general postulate of relativity.



XXV

GAUSSIAN CO-ORDINATES

ACCORDING
to Gauss, this combined analytical

and geometrical mode of handling the problem
can be arrived at in the following way. We

imagine a system of arbitrary curves (see Fig. 4)

drawn on the surface of the table. These we desig

nate as w-curves, and we indicate each of them by
means of a number. The curves =i, u=2 and

w=3 are drawn in the diagram. Between the curves

w=i and =2 we must imagine an infinitely large

number to be drawn, all of which correspond to real

numbers lying between I and 2. We have then

a system of w-curves, and

this &quot;infinitely dense&quot; sys

tem covers the whole sur

face of the table. These

w-curves must not intersect

each other, and through each

point of the surface one and

only one curve must pass.

Thus a perfectly definite

value of u belongs to every point on the surface of the

marble slab. In like manner we imagine a system of

w-curves drawn on the surface. These satisfy the same
conditions as the w-curves, they are provided with num-
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bers in a corresponding manner, and they may likewise

be of arbitrary shape. It follows that a value of u and

a value of v belong to every point on the surface of the

table. We call these two numbers the co-ordinates

of the surface of the table (Gaussian co-ordinates).

For example, the point P in the diagram has the Gaussian

co-ordinates =3, v=i. Two neighbouring points P
and P on the surface then correspond to the co-ordinates

P: u,v
P : u-\-du, v-\-dv,

where du and dv signify very small numbers. In a

similar manner we may indicate the distance (line-

interval) between P and P ,
as measured with a little

rod, by means of the very small number ^s. Then

according to Gauss we have

where gn , g12 , g22 , are magnitudes which depend in a

perfectly definite way on u and v. The magnitudes gu ,

g12 and g22 determine the behaviour of the rods relative

to the w-curves and u-curves, and thus also relative

to the surface of the table. For the case in which the

points of the surface considered form a Euclidean con

tinuum with reference to the measuring-rods, but

only in this case, it is possible to draw the w-curves

and 5y-curves and to attach numbers to them, in such a

manner, that we simply have :

ds2 =du*+dv*.

Under these conditions, the w-curves and v-curves are

straight lines in the sense of Euclidean geometry, and

they are perpendicular to each other. Here the Gaussian

co-ordinates are simply Cartesian ones. It is clear
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that Gauss co-ordinates are nothing more than an

association of two sets of numbers with the points of

the surface considered, of such a nature that numerical

values differing very slightly from each other are

associated with neighbouring points
&quot;

in
space.&quot;

So far, these considerations hold for a continuum

of two dimensions. But the Gaussian method can be

applied also to a continuum of three, four or more

dimensions. If, for instance, a continuum of four

dimensions be supposed available, we may represent

it in the following way. With every point of the

continuum we associate arbitrarily four numbers, xv x
2 ,

X3 ,
#4 , which are known as

&quot;

co-ordinates.&quot; Adjacent

points correspond to adjacent values of the co-ordinates.

If a distance ^s is associated with the adjacent points

P and P , this distance being measurable and well-

defined from a physical point of view, then the following

formula holds :

where the magnitudes gu , etc., have values which vary

with the position in the continuum. Only when the

continuum is a Euclidean one is it possible to associate

the co-ordinates x
l

. . #4 with the points of the

continuum so that we have simply

In this case relations hold in the four-dimensional

continuum which are analogous to those holding in our

three-dimensional measurements.

However, the Gauss treatment for dsz which we have

given above is not always possible. It is only possible

when sufficiently small regions of the continuum under

consideration may be regarded as Euclidean continua.



For example, this obviously holds in the case of the

marble slab of the table and local variation of temperature.

The temperature is practically constant for a small

part of the slab, and thus the geometrical behaviour of

the rods is almost as it ought to be according to the

rules of Euclidean geometry. Hence the imperfections

of the construction of squares in the previous section

do not show themselves clearly until this construction

is extended over a considerable portion of the surface

of the table.

We can sum this up as follows : Gauss invented a

method for the mathematical treatment of continua in

general, in which
&quot;

size-relations
&quot;

(&quot;
distances

&quot;

between

neighbouring points) are defined. To every point of a

continuum are assigned as many numbers (Gaussian co

ordinates) as the continuum has dimensions. This is

done in such a way, that only one meaning can be attached

to the assignment, and that numbers (Gaussian co

ordinates) which differ by an indefinitely small amount
are assigned to adjacent points. The Gaussian co

ordinate system is a logical generalisation of the Cartesian

co-ordinate system. It is also applicable to non-Euclidean

continua, but only when, with respect to the defined
&quot;

size
&quot;

or
&quot;

distance,&quot; small parts of the continuum

under consideration behave more nearly like a Euclidean

system, the smaller the part of the continuum under

our notice.



XXVI

THE SPACE-TIME CONTINUUM OF THE SPECIAL
THEORY OF RELATIVITY CONSIDERED AS
A EUCLIDEAN CONTINUUM

WE are now in a position to formulate more

exactly the idea of Minkowski, which was

only vaguely indicated in Section XVII.

,In accordance with the special theory of relativity,

certain co-ordinate systems are given preference

for the description of the four-dimensional, space-time
continuum. We called these

&quot;

Galileian co-ordinate

systems.&quot; For these systems, the four co-ordinates

x, y, z, t, which determine an event or in other

words a point of the four-dimensional continuum, are

defined physically in a simple manner, as set forth in

detail in the first part of this book. For the transition

from one Galileian system to another, which is moving

uniformly with reference to the first, the equations of

the Lorentz transformation are valid. These last

form the basis for the derivation of deductions from the

special theory of relativity, and in themselves they are

nothing more than the expression of the universal

validity of the law of transmission of light for all Galileian

systems of reference.

Minkowski found that the Lorentz transformations

satisfy the following simple conditions. Let us consider
91
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two neighbouring events, the relative position of which

in the four-dimensional continuum is given with respect

to a Galileian reference-body K by the space co-ordinate

differences dx, dy, dz and the time-difference dt. With
reference to a second Galileian system we shall suppose
that the corresponding differences for these two events

are dx , dy , dz
, dt . Then these magnitudes always

fulfil the condition x

The validity of the Lorentz transformation follows

from this condition. We can express this as follows :

The magnitude

which belongs to two adjacent points of the four-

dimensional space-time continuum, has the same value

for all selected (Galileian) reference-bodies. If we re

place x, y, z, &amp;gt;J

- i ct, by x
it

x2 , xs , #4 , we also obtain the

result that

is independent of the choice of the body of reference.

We call the magnitude ds the
&quot;

distance
&quot;

apart of the

two events or four-dimensional points.

Thus, if we choose as time-variable the imaginary

variable \l - 1 ct instead of the real quantity t, we can

regard the space-time continuum in accordance with

the special theory of relativity as a
&quot;

Euclidean
&quot;

four-dimensional continuum, a result which follows

from the considerations of the preceding section.

1 Cf. Appendices I and II. The relations which are derived
there for the co-ordinates themselves are valid also for co

ordinate differences, and thus also for co-ordinate differentials

(indefinitely small differences).



XXVII

THE SPACE -TIME CONTINUUM OF THE
GENERAL THEORY OF RELATIVITY IS

NOT A EUCLIDEAN CONTINUUM

IN
the first part of this book we were able to make use

of space-time co-ordinates which allowed of a simple
and direct physical interpretation, and which, accord

ing to Section XXVI, can be regarded as four-dimensional

Cartesian co-ordinates. This was possible on the basis

of the law of the constancy of the velocity of light. But

according to Section XXI, the general theory of relativity

cannot retain this law. On the contrary, we arrived at

the result that according to this latter theory the

velocity of light must always depend on the co-ordinates

when a gravitational field is present. In connection

with a specific illustration in Section XXIII, we found

that the presence of a gravitational field invalidates the

definition of the co-ordinates and the time, which led us

to our objective in the special theory of relativity.

In view of the results of these considerations we are

led to the conviction that, according to the general

principle of relativity, the space-time continuum cannot

be regarded as a Euclidean one, but that here we have

the general case, corresponding to the marble slab with

local variations of temperature, and with which we

made acquaintance as an example of a two-dimensional
93



continuum. Just as it was there impossible to construct

a Cartesian co-ordinate system from equal rods, so

here it is impossible to build up a system (reference-

body) from rigid bodies and clocks, which shall be of

such a nature that measuring-rods and clocks, arranged

rigidly with respect to one another, shall indicate posi

tion and time directly. Such was the essence of the

difficulty with which we were confronted in Section

XXIII.

But the considerations of Sections XXV and XXVI
show us the way to surmount this difficulty. We refer the

four-dimensional space-time continuum in an arbitrary

manner to Gauss co-ordinates. We assign to every

point of the continuum (event) four numbers, xlt
x2 ,

#3 , x (co-ordinates), which have not the least direct

physical significance, but only serve the purpose of

numbering the points of the continuum in a definite

but arbitrary manner. This arrangement does not even

need to be of such a kind that we must regard xlt
x2 ,

x
3
as

&quot;

space
&quot;

co-ordinates and #4 as a
&quot;

time
&quot;

co-ordinate.

The reader may think that such a description of the

world would be quite inadequate. What does it mean
to assign to an event the particular co-ordinates x

lf

x
t&amp;gt;

x
s&amp;gt;

x
&amp;gt;

if m themselves these co-ordinates have no

significance ? More careful consideration shows, how
ever, that this anxiety is unfounded. Let us consider,

for instance, a material point with any kind of motion.

If this point had only a momentary existence without

duration, then it would be described in space-time by a

single system of values x
it
x2,x3,x^ Thus its permanent

existence must be characterised by an infinitely large

number of such systems of values, the co-ordinate values

of which are so close together as to give continuity ;
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corresponding to the material point, we thus have a

(uni-dimensional) line in the four-dimensional continuum.

In the same way, any such lines in our continuum

correspond to many points in motion. The only state

ments having regard to these points which can claim

a physical existence are in reality the statements about

their encounters. In our mathematical treatment,

such an encounter is expressed in the fact that the two
lines which represent the motions of the points in

question have a particular system of co-ordinate values,

x
i&amp;gt;

x
z&amp;gt;

X
3&amp;gt;

Xv m common. After mature consideration

the reader will doubtless admit that in reality such

encounters constitute the only actual evidence of a

time-space nature with which we meet in physical
statements.

When we were describing the motion of a material

point relative to a body of reference, we stated

nothing more than the encounters of this point with

particular points of the reference-body. We can also

determine the corresponding values of the time by the

observation of encounters of the body with clocks, in

conjunction with the observation of the encounter of the

hands of clocks with particular points on the dials.

It is just the same in the case of space-measurements by
means of measuring-rods, as a little consideration will

show.

The following statements hold generally : Every

physical description resolves itself into a number of

statements, each of which refers to the space-time

coincidence of two events A and B. In terms of

Gaussian co-ordinates, every such statement is expressed

by the agreement of their four co-ordinates xlt x2 , x3 ,

%4 . Thus in reality, the description of the time-space
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continuum by means of Gauss co-ordinates completely

replaces the description with the aid of a body of re

ference, without suffering from the defects of the latter

mode of description ; it is not tied down to the Euclidean

character of the continuum which has to be represented.



XXVIII

EXACT FORMULATION OF THE GENERAL
PRINCIPLE OF RELATIVITY

WE are now in a position to replace the pro
visional formulation of the general principle
of relativity given in Section XVIII by

an exact formulation. The form there used, &quot;All

bodies of reference K, K
, etc., are equivalent for

the description of natural phenomena (formulation of

the general laws of nature), whatever may be their

state of motion,&quot; cannot be maintained, because the

use of rigid reference-bodies, in the sense of the method
followed in the special theory of relativity, is in gereral
not possible in space-time description. The Gauss

co-ordinate system has to take the place of the body of

reference. The following statement corresponds to the

fundamental idea of the general principle of relativity :

&quot;

All Gaussian co-ordinate systems are essentially equi

valent for the formulation of the general laws of nature.&quot;

We can state this general principle of relativity in still

another form, which renders it yet more clearly in

telligible than it is when in the form of the natural

extension of the special principle of relativity. Accord

ing to the special theory of relativity, the equations
which express the general laws of nature pass over into

equations of the same form when, by making use of the

Lorentz transformation, we replace the space-time

7
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variables x, y, z, t, of a (Galileian) reference-body K
by the space-time variables x

, y , z , t
,
of a new re

ference-body K . According to the general theory

of relativity, on the other hand, by application of

arbitrary substitutions of the Gauss variables x
l}
x2 , % x,

the equations must pass over into equations of the same

form ; for every transformation (not only the Lorentz

transformation) corresponds to the transition of one

Gauss co-ordinate system into another.

If we desire to adhere to our
&quot;

old-time
&quot;

three-

dimensional view of things, then we can characterise

the development which is being undergone by the

fundamental idea of the general theory of relativity

as follows : The special theory of relativity has reference

to Galileian domains, i.e. to those in which no gravita

tional field exists. In this connection a Galileian re

ference-body serves as body of reference, i.e. a rigid

body the state of motion of which is so chosen that the

Galileian law of the uniform rectilinear motion of
&quot;

isolated
&quot;

material points holds relatively to it.

Certain considerations suggest that we should refer

the same Galileian domains to non-Galileian reference-

bodies also. A gravitational field of a special kind is

then present with respect to these bodies (cf . SectionsXX
and XXIII).

In gravitational fields there are no such things as rigid

bodies with Euclidean properties ; thus the fictitious rigid

body of reference is of no avail in the general theory of

relativity. The motion of clocks is also influenced by

gravitational fields, and in such a way that a physical
definition of time which is made directly with the aid of

clocks has by no means the same degree of plausibility

as in the special theory of relativity.
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For this reason non-rigid reference-bodies are used,

which are as a whole not only moving in any way
whatsoever, but which also suffer alterations in form

ad lib. during their motion. Clocks, for which the law of

motion is of any kind, however irregular, serve for the

definition of time. We have to imagine each of these

clocks fixed at a point on the non-rigid reference-body.
These clocks satisfy only the one condition, that the
&quot;

readings
&quot;

which are observed simultaneously on

adjacent clocks (in space) differ from each other by an

indefinitely small amount. This non-rigid reference-

body, which might appropriately be termed a
&quot;

reference-

mollusk,&quot; is in the main equivalent to a Gaussian four-

dimensional co-ordinate system chosen arbitrarily.

That which gives the &quot;mollusk&quot; a certain compre-
hensibleness as compared with the Gauss co-ordinate

system is the (really unjustified) formal retention of

the separate existence of the space co-ordinates as

opposed to the time co-ordinate. Every point on the

mollusk is treated as a space-point, and every material

point which is at rest relatively to it as at rest, so long as

the mollusk is considered as reference-body. The

general principle of relativity requires that all these

mollusks can be used as reference-bodies with equal

right and equal success in the formulation of the general

laws of nature ; the laws themselves must be quite

independent of the choice of mollusk.

The great power possessed by the general principle

of relativity lies in the comprehensive limitation which

is imposed on the laws of nature in consequence of what

we have seen above.



XXIX

THE SOLUTION OF THE PROBLEM OF GRAVI
TATION ON THE BASIS OF THE GENERAL
PRINCIPLE OF RELATIVITY

IF
the reader has followed all our previous con

siderations, he will have no further difficulty in

understanding the methods leading to the solution

of the problem of gravitation.

We start off from a consideration of a Galileian

domain, i.e. a domain in which there is no gravitational

field relative to the Galileian reference-body K. The

behaviour of measuring-rods and clocks with reference

to K is known from the special theory of relativity,

likewise the behaviour of
&quot;

isolated
&quot;

material points ;

the latter move uniformly and in straight lines.

Now let us refer this domain to a random Gauss co

ordinate system or to a
&quot;

mollusk
&quot;

as reference-body
K . Then with respect to K there is a gravitational
field G (of a particular kind). We learn the behaviour

of measuring-rods and clocks and also of freely-moving
material points with reference to K simply by mathe
matical transformation. We interpret this behaviour

as the behaviour of measuring-rods, clocks and material

points under the influence of the gravitational field G.

Hereupon we introduce a hypothesis : that the in

fluence of the gravitational field on measuring-rods,
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clocks and freely-moving material points continues to

take place accordingrto the same laws, even in the case

when the prevailing gravitational field is not derivable

from the Galileian special case, simply by means of a

transformation of co-ordinates.

The next step is to investigate the space-time
behaviour of the gravitational field G, which was derived

from the Galileian special case simply by transformation

of the co-ordinates. This behaviour is formulated

in a law, which is always valid, no matter how the

reference-body (mollusk) used in the description may
be chosen.

This law is not yet the general law of the gravitational

field, since the gravitational field under consideration is

of a special kind. In order to find out the general

law-of-field of gravitation we still require to obtain a

generalisation of the law as found above. This can be

obtained without caprice, however, by taking into

consideration the following demands :

(a) The required generalisation must likewise satisfy

the general postulate of relativity.

(6) If there is any matter in the domain under con

sideration, only its inertia! mass, and thus

according to Section XV only its energy is of

importance for its effect in exciting a field.

(c) Gravitational field and matter together must

satisfy the law of the conservation of energy

(and of impulse).

Finally, the general principle of relativity permits

us to determine the influence of the gravitational field

on the course of all those processes which take place

according to known laws when a gravitational field is
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absent, i.e. which have already been fitted into the

frame of the special theory of relativity. In this con

nection we proceed in principle according to the method
which has already been explained for measuring-rods,
clocks and freely-moving material points.

The theory of gravitation derived in this way from

the general postulate of relativity excels not only in

its beauty ; nor in removing the defect attaching to

classical mechanics which was brought to light in Section

XXI
; nor in interpreting the empirical law of the equality

of inertial and gravitational mass
; but it has also

already explained a result of observation in astronomy,

against which classical mechanics is powerless.
If we confine the application of the theory to the

case where the gravitational fields can be regarded as

being weak, and in which all masses move with respect
to the co-ordinate system with velocities which are

small compared with the velocity of light, we then obtain

as a first approximation the Newtonian theory. Thus
the latter theory is obtained here without any particular

assumption, whereas Newton had to introduce the

hypothesis that the force of attraction between mutually

attracting material points is inversely proportional to

the square of the distance between them. If we in

crease the accuracy of the calculation, deviations from

the theory of Newton make their appearance, practi

cally all of which must nevertheless escape the test of

observation owing to their smallness.

We must draw attention here to one of these devia

tions. According to Newton s theory, a planet moves

round the sun in an ellipse, which would permanently
maintain its position with respect to the fixed stars,

if we could disregard the motion of the fixed stars
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themselves and the action of the other planets under
consideration. Thus, if we correct the observed motion
of the planets for these two influences, and if Newton s

theory be strictly correct, we ought to obtain for the

orbit of the planet an ellipse, which is fixed with re

ference to the fixed stars. This deduction, which can
be tested with great accuracy, has been confirmed

for all the planets save one, with the precision that is

capable of being obtained by the delicacy of observation

attainable at the present time. The sole exception
is Mercury, the planet which lies nearest the sun. Since

the time of Leverrier, it has been known that the ellipse

corresponding to the orbit of Mercury, after it has been

corrected for the influences mentioned above, is not

stationary with respect to the fixed stars, but that it

rotates exceedingly slowly in the plane of the orbit

and in the sense of the orbital motion. The value

obtained for this rotary movement of the orbital ellipse

was 43 seconds of arc per century, an amount ensured

to be correct to within a few seconds of arc. This

effect can be explained by means of classical mechanics

only on the assumption of hypotheses which have

little probability, and which were devised solely for

this purpose.
On the basis of the general theory of relativity, it

is found that the ellipse of every planet round the sun

must necessarily rotate in the manner indicated above ;

that for all the planets, with the exception of Mercury,

this rotation is too small to be detected with the delicacy

of observation possible at the present time ;
but that in

the case of Mercury it must amount to 43 seconds of

arc per century, a result which is strictly in agreement

with observation.
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Apart from this one, it has hitherto been possible to

make only two deductions from the theory which admit

of being tested by observation, to wit, the curvature

of light rays by the gravitational field of the sun,
1

and a displacement of the spectral lines of light reaching
us from large stars, as compared with the corresponding
lines for light produced in an analogous manner terres

trially (i.e. by the same kind of molecule). I do not

doubt that these deductions from the theory will be

confirmed also.

1 Observed by Eddington and others in 1919. (Cf. Appendix
III.)



PART III

CONSIDERATIONS ON THE UNIVERSE AS
A WHOLE

XXX

COSMOLOGICAL DIFFICULTIES OF NEWTON S

THEORY

APART
from the difficulty discussed in Section

XXI, there is a second fundamental difficulty

attending classical celestial mechanics, which,

to the best of my knowledge, was first discussed in

detail by the astronomer Seeliger. If we ponder over

the question as to how the universe, considered as a

whole, is to be regarded, the first answer that suggests

itself to us is surely this : As regards space (and time)

the universe is infinite. There are stars everywhere,
so that the density of matter, although very variable

in detail, is nevertheless on the average everywhere the

same. In other words : However far we might travel

through space, we should find everywhere an attenuated

swarm of fixed stars of approximately the same kind

and density.

This view is not in harmony with the theory of

Newton. The latter theory rather requires that the

universe should have a kind of centre in which the
105



106 CONSIDERATIONS ON THE UNIVERSE

density of the stars is a maximum, and that as we

proceed outwards from this centre the group-density
of the stars should diminish, until finally, at great

distances, it is succeeded by an infinite region of empti
ness. The stellar universe ought to be a finite island in

the infinite ocean of space.
1

This conception is in itself not very satisfactory.

It is still less satisfactory because it leads to the result

that the light emitted by the stars and also individual

stars of the stellar system are perpetually passing out

into infinite space, never to return, and without ever

again coming into interaction with other objects of

nature. Such a finite material universe would be

destined to become gradually but systematically im

poverished.
In order to escape this dilemma, Seeliger suggested a

modification of Newton s law, in which he assumes that

for great distances the force of attraction between two

masses diminishes more rapidly than would result from

the inverse square law. In this way it is possible for the

mean density of matter to be constant everywhere,
even to infinity, without infinitely large gravitational

fields being produced. We thus free ourselves from the

1
Proof According to the theory of Newton, the number of

&quot;

lines of force
&quot; which come from infinity and terminate in a

mass m is proportional to the mass m. If, on the average, the

mass-density p is constant throughout the universe, then a

sphere of volume V will enclose the average mass pQ V. Thus
the number of lines of force passing through the surface F of the

sphere into its interior is proportional to p V. For unit area

of the surface of the sphere the number of lines of force which

enters the sphere is thus proportional to
/&amp;gt;

or to
/&amp;gt;

R. Hence
F

the intensity of the field at the surface would ultimately become
infinite with increasing radius R of the sphere, which is impossible.
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distasteful conception that the material universe ought
to possess something of the nature of a centre. Of

course we purchase our emancipation from the funda

mental difficulties mentioned, at the cost of a modifica

tion and complication of Newton s law which has

neither empirical nor theoretical foundation. We can

imagine innumerable laws which would serve the same

purpose, without our being able to state a reason why
one of them is to be preferred to the others ; for any
one of these laws would be founded just as little on

more general theoretical principles as is the law of

Newton.
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THE POSSIBILITY OF A &quot;FINITE&quot; AND YET
&quot;UNBOUNDED&quot; UNIVERSE

BUT
speculations on the structure of the universe

also move in quite another direction. The
development of non-Euclidean geometry led to

the recognition of the fact, that we can cast doubt on the

infiniteness of our space without coming into conflict
with the laws of thought or with experience (Riemann,
Helmholtz) . These questions have already been treated
in detail and with unsurpassable lucidity by Helm
holtz and Poincare, whereas I can only touch on them
briefly here.

In the first place, we imagine an existence in two-
dimensional space. Flat beings with flat implements,
and in particular flat rigid measuring-rods, are free to
move in a plane. For them nothing exists outside of
this plane: that which they observe to happen to
themselves and to their flat

&quot;

things
&quot;

is the all-inclusive

reality of their plane. In particular, the constructions
of plane Euclidean geometry can be carried out by
means of the rods, e.g. the lattice construction, considered
in Section XXIV. In contrast to ours, the universe of
these beings is two-dimensional

; but, like ours, it extends
to infinity. In their universe there is room for an
infinite number of identical squares made up of rods

inR * *
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i.e. its volume (surface) is infinite. If these beings say
their universe is

&quot;

plane,&quot; there is sense in the state

ment, because they mean that they can perform the con
structions of plane Euclidean geometry with their rods.

In this connection the individual rods always represent
the same distance, independently of their position.

Let us consider now a second two-dimensional exist

ence, but this time on a spherical surface instead of on

a plane. The flat beings with their measuring-rods
and other objects fit exactly on this surface and they
are unable to leave it. Their whole universe of observa

tion extends exclusively over the surface of the sphere.

Are these beings able to regard the geometry of their

universe as being plane geometry and their rods withal

as the realisation of
&quot;

distance
&quot;

? They cannot do

this. For if they attempt to realise a straight line, they
will obtain a curve, which we &quot;

three-dimensional

beings
&quot;

designate as a great circle, i.e. a self-contained

line of definite finite length, which can be measured

up by means of a measuring-rod. Similarly, this

universe has a finite area that can be compared with the

area of a square constructed with rods. The great

charm resulting from this consideration lies in the

recognition of the fact that the universe of these beings is

finite and yet has no limits.

But the spherical-surface beings do not need to go
on a world-tour in order to perceive that they are not

living in a Euclidean universe. They can convince

themselves of this on every part of their
&quot;

world,&quot;

provided they do not use too small a piece of it. Starting

from a point, they draw
&quot;

straight lines
&quot;

(arcs of circles

as judged in three-dimensional space) of equal length

in all directions. They will call the line joining the
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free ends of these lines a
&quot;

circle.&quot; For a plane surface,
the ratio of the circumference of a circle to its diameter,
both lengths being measured* with the same rod, is,

according to Euclidean geometry of the plane, equal to

a constant value TT, which is independent of the diameter
of the circle. On their spherical surface our flat beings
would find for this ratio the value

i.e. a smaller value than TT, the difference being the
more considerable, the greater is the radius of the
circle in comparison with the radius R of the

&quot;

world-

sphere*&quot; By means of this relation the spherical beings
can determine the radius of their universe

(&quot;
world

&quot;),

even when only a relatively small part of their world-

sphere is available for their measurements. But if this

part is very small indeed, they will no longer be able to

demonstrate that they are on a spherical
&quot;

world
&quot;

and
not on a Euclidean plane, for a small part of a spherical
surface differs only slightly from a piece of a plane of

the same size.

Thus if the spherical-surface beings are living on a

planet of which the solar system occupies onlya negligibly
small part of the spherical universe, they have no means
of determining whether they are living in a finite or in
an innnite universe, because the

&quot;

piece of universe
&quot;

to which they have access is in both cases practically
plane, or Euclidean. It follows directly from this

discussion, that for our sphere-beings the circumference
of a circle first increases with the radius until the

&quot;

cir-
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cumference of the universe
&quot;

is reached, and that it

thenceforward gradually decreases to zero for still

further increasing values of the radius. During this

process the area of the circle continues to increase

more and more, until finally it becomes equal to the

total area of the whole
&quot;

world-sphere.&quot;

Perhaps the reader will wonder why we have placed
our

&quot;

beings
&quot;

on a sphere rather than on another closed

surface. But this choice has its justification in the fact

that, of all closed surfaces, the sphere is unique in possess

ing the property that all points on it are equivalent. I

admit that the ratio of the circumference c of a circle

to its radius r depends on r, but for a given value of r

it is the same for all points of the
&quot;

world-sphere
&quot;

;

in other words, the
&quot;

world-sphere
&quot;

is a
&quot;

surface of

constant curvature.&quot;

To this two-dimensional sphere-universe there is a

three-dimensional analogy, namely, the three-dimensional

spheriqal space which was discovered by Riemann. Its

points are likewise all equivalent. It possesses a finite

volume, which is determined by its &quot;radius&quot;
(2,Tr

2R3
).

Is it possible to imagine a spherical space ? To imagine
a space means nothing else than that we imagine an

epitome of our
&quot;

space
&quot;

experience, i.e. of experience

that we can have in the movement of
&quot;

rigid
&quot;

bodies.

In this sense we can imagine a spherical space.

Suppose we draw lines or stretch strings in all direc

tions from a point, and mark off from each of these

the distance r with a measuring-rod. All the free end-

points of these lengths lieion a spherical surface. We
can specially measure up the area (F) of this surface

by means of a%quare made up of measuring-rods. If

the universe is Euclidean, then F=q*rz
; if it is spherical,
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then F is always less than 47^. With increasing

values of r, F increases from zero up to a maximum
value which is determined by the

&quot;

world-radius,&quot; but

for still further increasing values of r, the area gradually

diminishes to zero. At first, the straight lines which

radiate from the starting point diverge farther and

farther from one another, but later they approach
each other, and finally they run together again at a
&quot;

counter-point
&quot;

to the starting point. Under such

conditions they have traversed the whole spherical

space. It is easily seen that the three-dimensional

spherical space is quite analogous to the two-dimensional

spherical surface. It is finite (i.e. of finite volume), and

has no bounds.

It may be mentioned that there is yet another kind

of curved space :

&quot;

elliptical space.&quot; It can be regarded
as a curved space in which the two

&quot;

counter-points
&quot;

are identical (indistinguishable from each other). An

elliptical universe can thus be considered to some

extent as a curved universe possessing central symmetry.
It follows from what has been said, that closed spaces

without limits are conceivable. From amongst these,

the spherical space (and the elliptical) excels in its

simplicity, since all points on it are equivalent. As a

result of this discussion, a most interesting question
arises for astronomers and physicists, and that is

whether the universe in which we live is infinite, or

whether it is finite in the manner of the spherical uni

verse. Our experience is far from being sufficient to

enable us to answer this question. But the general

theory of relativity permits of our answering it with a

moderate degree of certainty, and in this connection the

difficulty mentioned in Section XXX finds its solution.



XXXII

THE STRUCTURE OF SPACE ACCORDING TO
THE GENERAL THEORY OF RELATIVITY

ACCORDING
to the general theory of relativity,

the geometrical properties of space are not in

dependent, but they are determined by matter.

Thus we can draw conclusions about the geometrical
structure of the universe only if we base our considera

tions on the state of the matter as being something
that is known. We know from experience that, for a

suitably chosen co-ordinate system, the velocities of

the stars are small as compared with the velocity of

transmission of light. We can thus as a rough ap

proximation arrive at a conclusion as to the nature of

the universe as a whole, if we treat the matter as being
at rest.

We already know from our previous discussion that the

behaviour of measuring-rods and clocks is influenced by

gravitational fields, i.e. by the distribution of matter.

This in itself is sufficient to exclude the possibility of

the exact validity of Euclidean geometry in our uni

verse. But it is conceivable that our universe differs

only slightly from a Euclidean one, and this notion

seems all the more probable, since calculations show

that the metrics of surrounding space is influenced only

to an exceedingly small extent by masses even of the

8
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magnitude of our sun. We might imagine that, as

regards geometry, our universe behaves analogously

to a surface which is irregularly curved in its individual

parts, but which nowhere departs appreciably from a

plane : something like the rippled surface of a lake.

Such a universe might fittingly be called a quasi-

Euclidean universe. As regards its space it would be

infinite. But calculation shows that in a quasi-

Euclidean universe the average density of matter

would necessarily be nil. Thus such a universe could

not be inhabited by matter everywhere ; it would

present to us that unsatisfactory picture which we

portrayed in Section XXX.
If we are to have in the universe an average density

of matter which differs from zero, however small may
be that difference, then the universe cannot be quasi-

Euclidean. On the contrary, the results of calculation

indicate that if matter be distributed uniformly, the

universe would necessarily be spherical (or elliptical).

Since in reality the detailed distribution of matter is

not uniform, the real universe will deviate in individual

parts from the spherical, i.e. the universe will be quasi-

spherical. But it will be necessarily finite. In fact, the

theory supplies us with a simple connection x between

the space-expanse of the universe and the average

density of matter in it.

1 For the
&quot;

radius
&quot;

JR of the universe we obtain the equation

The use of the C.G.S. system in this equation gives ?= ro8 . 10&quot;;

is the average density of the matter.
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SIMPLE DERIVATION OF THE LORENTZ
TRANSFORMATION [SUPPLEMENTARY TO SEC
TION XI]

FOR
the relative orientation of the co-ordinate

systems indicated in Fig. 2, the #-axes of both

systems permanently coincide. In the present
case we can divide the problem into parts by considering

first only events which are localised on the #-axis. Any
such event is represented with respect to the co-ordinate

system K by the abscissa x and the time t, and with

respect to the system K by the abscissa x and the

time t . We require to find x and t when x and t are

given.

A light-signal, which is proceeding along the positive

axis of x, is transmitted according to the equation

xct
or

X Ct=Q . . . (l).

Since the same light-signal has to be transmitted relative

to K with the velocity c, the propagation relative to

the system K will be represented by the analogous

formula

x ct =o ... (2)

Those space-time points (events) which satisfy (i) must
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also satisfy (2). Obviously this will be the case when
the relation

(x -cf)=X(x^c^ . . (3).

is fulfilled in general, where A. indicates a constant ; for,

according to (3), the disappearance of (x ct) involves

the disappearance of (x ct }.

If we apply quite similar considerations to light rays

which are being transmitted along the negative #-axis,

we obtain the condition

(x +ct )=}*(x+ct) - (4)-

By adding (or subtracting) equations (3) and (4), and

introducing for convenience the constants a and b in

place of the constants X and p., where

and
7. A.

2

we obtain the equations

x =
ax-bct\ /-\

ct = act - bxj

We should thus have the solution of our problem,
if the constants a and b were known. These result

from the following discussion.

For the origin of K we have permanently x =o, and

hence according to the first of the equations (5)

be
~
a

If we call v the velocity with which the origin of K is

moving relative to K, we then have

be*--.,.. (6).
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The same value v can be obtained from equation (5),

if we calculate the velocity of another point of K
relative to K, or the velocity (directed towards the

negative #-axis) of a point of K with respect to K . In

short, we can designate v as the relative velocity of the

two systems.

Furthermore, the principle of relativity teaches us

that, as judged from K, the length of a unit measuring-
rod which is at rest with reference to K must be exactly
the same as the length, as judged from K , of a unit

measuring-rod which is at rest relative to K. In order

to see how the points of the # -axis appear as viewed

from K, we only require to take a &quot;snapshot&quot; of K
from K ; this means that we have to insert a particular

value of t (time of K), e.g. t=o. For this value of t

we then obtain from the first of the equations (5)

x =ax.

Two points of the # -axis which are separated by the

distance A# =i when measured in the K system are

thus separated in our instantaneous photograph by the

distance

A,-!
. . . (7).

But if the snapshot be taken from K (t =o), and if

we eliminate t from the equations (5), taking into

account the expression (6), we obtain

From this we conclude that two points on the #-axis

and separated by the distance i (relative to K) will

be represented on our snapshot by the distance
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But from what has been said, the two snapshots
must be identical ; hence A* in (7) must be equal to

A* in (jo) , so that we obtain

The equations (6) and (76) determine the constants a

and b. By inserting the values of these constants in (5),

we obtain the first and the fourth of the equations

given in Section XI.
/ x - vt

/ u2

VI- -5V /^

=

(8).

C
,

Thus we have obtained the Lorentz transformation

for events on the #-axis. It satisfies the condition

The extension of this result, to include events which

take place outside the #-axis, is obtained by retaining

equations (8) and supplementing them by the relations

:?} (9)-

In this way we satisfy the postulate of the constancy of

the velocity of light in vacua for rays of light of arbitrary

direction, both for the system K and for the system K ,

This may be shown in the following manner.

We suppose a light-signal sent out from the origin

of K at the time =o. It will be propagated according
to the equation
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or, if we square this equation, according to the equation

ijr i . . \J-
It is required by the law of propagation of light, in

conjunction with the postulate of relativity, that the
transmission of the signal in question should take place

as judged from K in accordance with the corre

sponding formula

r =cif,

or,

In order that equation (TOO) may be a consequence of

equation (10), we must have

(ii).

Since equation (8a) must hold for points on the

#-axis, we thus have o-=i. It is easily seen that the

Lorentz transformation really satisfies equation (11)

for cr=i
; for (11) is a consequence of (8a) and (9),

and hence also of (8) and (9). We have thus derived

the Lorentz transformation.

The Lorentz transformation represented by (8) and

(9) still requires to be generalised. Obviously it is

immaterial whether the axes of K be chosen so that

they are spatially parallel to those of K. It is also not

essential that the velocity of translation of K with

respect to K should be in the direction of the #-axis.

A simple consideration shows that we are able to

construct the Lorentz transformation in this general

sense from two kinds of transformations, viz. from

Lorentz transformations in the special sense and from

purely spatial transformations, which corresponds to

the replacement of the rectangular co-ordinate system
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by a new system with its axes pointing in other

directions.

Mathematically, we can characterise the generalised

Lorentz transformation thus :

It expresses x , y , z ,
t , in terms of linear homogeneous

functions of x, y, z, t, of such a kind that the relation

x *+y 2+z 2 -cH z=xz+y*+z*-cH2
. . (na).

is satisfied identically. That is to say : If we sub

stitute their expressions in x, y, z, t, in place of x , y ,

z
,

t , on the left-hand side, then the left-hand side of

(na) agrees with the right-hand side.
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MINKOWSKFS FOUR - DIMENSIONAL SPACE
(&quot;
WORLD

&quot;) [SUPPLEMENTARY TO SECTION XVII]

WE can characterise the Lorentz transformation

still more simply if we introduce the imaginary

\/
- i . ct in place of t, as time-variable. If, in

accordance with this, we insert

__
X = J -I .Ct,

and similarly for the accented system K , then the

condition which is identically satisfied by the trans

formation can be expressed thus :

That is, by the afore-mentioned choice of
&quot;

co

ordinates,&quot; (na) is transformed into this equation.

We see from (12) that the imaginary time co-ordinate

#4 enters into the condition of transformation in exactly

the same way as the space co-ordinates x
lt

x2 , x3 . It

is due to this fact that, according to the theory of
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relativity, the
&quot;

time
&quot;

x enters into natural laws in the

same form as the space co-ordinates xv #2 , *a-

A four-dimensional continuum described by the
&quot;

co-ordinates
&quot;

x
lt X2 , xs , x, was called

&quot;

world
&quot;

by
Minkowski, who also termed a point-event a

&quot;

world-

point.&quot; From a
&quot;

happening
&quot;

in three-dimensional

space, physics becomes, as it were, an
&quot;

existence
&quot;

in

the four-dimensional
&quot;

world.&quot;

This four-dimensional
&quot;

world
&quot;

bears a close similarity

to the three-dimensional
&quot;

space
&quot;

of (Euclidean)

analytical geometry. If we introduce into the latter a

new Cartesian co-ordinate system (x\, x
2 , x 3) with

the same origin, then x
lt
x

2&amp;gt;

x
3&amp;gt;

are linear homogeneous
functions of x

lt x2 , x
a&amp;gt;

which identically satisfy the

equation

%1 ~T #2 1*8 ~%l \%2 i%3

The analogy with (12) is a complete one. We can

regard Minkowski s
&quot;

world
&quot;

in a formal manner as a

four-dimensional Euclidean space (with imaginary
time co-ordinate) ; the Lorentz transformation corre

sponds to a
&quot;

rotation
&quot;

of the co-ordinate system in the

four-dimensional
&quot;

world.&quot;



THE EXPERIMENTAL CONFIRMATION OF THE
GENERAL THEORY OF RELATIVITY

FROM
a systematic theoretical point of view, we

may imagine the process of evolution of an em

pirical science to be a continuous process of in

duction. Theories are evolved and are expressed in

short compass as statements of a large number of in

dividual observations in the form of empirical laws,

from which the general laws can be ascertained by com

parison. Regarded in this way, the development of a

science bears some resemblance to the compilation of a

classified catalogue. It is, as it were, a purely empirical

enterprise.

But this point of view by no means embraces the whole

of the actual process ;
for it slurs over the important

part played by intuition and deductive thought in the

development of an exact science. As soon as a science

has emerged from its initial stages, theoretical advances

are no longer achieved merely by a process of arrange

ment. Guided by empirical data, the investigator

rather develops a system of thought which, in general,

is built up logically from a small number of fundamental

assumptions, the so-called axioms. We call such a

system of thought a theory. The theory finds the
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justification for its existence in the fact that it correlates

a large number of single observations, and it is just here

that the
&quot;

truth
&quot;

of the theory lies.

Corresponding to the same complex of empirical data,

there may be severa] theories, which differ from one

another to a considerable extent. But as regards the

deductions from the theories which are capable of

being tested, the agreement between the theories may
be so complete, that it becomes difficult to find such

deductions in which the two theories differ from each

other. As an example, a case of general interest is

available in the province of biology, in the Darwinian

theory of the development of species by selection in

the struggle for existence, and in the theory of develop
ment which is based on the hypothesis of the hereditary
transmission of acquired characters.

We have another instance of far-reaching agreement
between the deductions from two theories in Newtonian

mechanics on the one hand, and the general theory of

relativity on the other. This agreement goes so far,

that up to the present we have been able to find only
a few deductions from the general theory of relativity

which are capable of investigation, and to which the

physics of pre-relativity days does not also lead, and
this despite the profound difference in the fundamental

assumptions of the two theories. In what follows, we
shall again consider these important deductions, and we
shall also discuss the empirical evidence appertaining to

them which has hitherto been obtained.

(a) MOTION OF THE PERIHELION OF MERCURY

According to Newtonian mechanics and Newton s

law of gravitation, a planet which is revolving round the
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sun would describe an ellipse round the latter, or, more

correctly, round the common centre of gravity of the
sun and the planet. In such a system, the sun, or the
common centre of gravity, lies in one of the foci of the
orbital ellipse in such a manner that, in the course of a

planet-year, the distance sun-planet grows from a

minimum to a maximum, and then decreases again to

a minimum. If instead of Newton s law we insert a

somewhat different law of attraction into the calcula

tion, we find that, according to this new law, the motion

would still take place in such a manner that the distance

sun-planet exhibits periodic variations
; but in this

case the angle described by the line joining sun and

planet during such a period (from perihelion closest

proximity to the sun to perihelion) would differ from

360. The line of the orbit would not then be a closed

one, but in the course of time it would fill up an annular

part of the orbital plane, viz. between the circle of

least and the circle of greatest distance of the planet from

the sun.

According also to the general theory of relativity,

which differs of course from the theory of Newton, a

small variation from the Newton-Kepler motion of a

planet in its orbit should take place, and in such a way,
that the angle described by the radius sun-planet

between one perihelion and the next should exceed that

corresponding to one complete revolution by an amount

given by

(N.B. One complete revolution corresponds to the

angle 2?,- in the absolute angular measure customary in

physics, and the above expression gives the amount by
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which the radius sun-planet exceeds this angle during
the interval between one perihelion and the next.)

In this expression a represents the major semi-axis of

the ellipse, e its eccentricity, c the velocity of light, and

T the period of revolution of the planet. Our result

may also be stated as follows : According to the general

theory of relativity, the major axis of the ellipse rotates

round the sun in the same sense as the orbital motion

of the planet. Theory requires that this rotation should

amount to 43 seconds of arc per century for the planet

Mercury, but for the other planets of our solar system its

magnitude should be so small that it would necessarily

escape detection. 1

In point of fact, astronomers have found that the

theory of Newton does not suffice to calculate the

observed motion of Mercury with an exactness cor

responding to that of the delicacy of observation attain

able at the present time. After taking account of all

the disturbing influences exerted on Mercury by the

remaining planets, it was found (Leverrier 1859
and Newcomb 1895) that an unexplained perihelial

movement of the orbit of Mercury remained over, the

amount of which does not differ sensibly from the above-

mentioned +43 seconds of arc per century. The un

certainty of the empiricaa result amounts to a few

seconds only.

(b) DEFLECTION OF LIGHT BY A GRAVITATIONAL

FIELD

In Section XXII it has been already mentioned that,

1
Especially since the next planet Venus has an orbit that is

almost an exact circle, which makes it more difficult to locate

the perihelion with precision.
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according to the general theory of relativity, a ray of

light will experience a curvature of its path when passing

through a gravitational field, this curvature being similar

to that experienced by the path of a body which is

projected through a gravitational field. As a result of

this theory, we should expect that a ray of light which

is passing close to a heavenly body would be deviated

towards the latter. For a ray of light which passes the

sun at a distance of A sun-radii from its centre, the

angle of deflection (a) should amount to

i -7 seconds of arc_____

It may be added that, according to the theory, half of

this deflection is produced by the

Newtonian field of attraction of the i

sun, and the other half by the geo- ^D(

metrical modification (&quot;curvature&quot;)

of space caused by the sun.
,

This result admits of an experi- / /

mental test by means of the photo

graphic registration of stars during

a total eclipse of the sun. The only D jj
reason why we must wait for a total //

2

eclipse is because at every other /

time the atmosphere is so strongly t

illuminated by the light from the FIG. 5.

sun that the stars situated near the

sun s disc are invisible. The predicted effect can be

seen clearly from the accompanying diagram. If the

sun (S) were not present, a star which is practically

infinitely distant would be seen in the direction Dv as

observed from the earth. But as a consequence of the
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deflection of light from the star by the sun, the star

will be seen in the direction D2 , i.e. at a somewhat

greater distance from the centre of the sun than cor

responds to its real position.

In practice, the question is tested in the following

way. The stars in the neighbourhood of the sun are

photographed during a solar eclipse. In addition, a

second photograph of the same stars is taken when the

sun is situated at another position in the sky, i.e. a few

months earlier or later. As compared with the standard

photograph, the positions of the stars on the eclipse-

photograph ought to appear displaced radially out

wards (away from the centre of the sun) by an amount

corresponding to the angle a.

We are indebted to the Royal Society and to the

Royal Astronomical Society for the investigation of

this important deduction. Undaunted by the war and

by difficulties of both a material and a psychological
nature aroused by the war, these societies equipped
two expeditions to Sobral (Brazil), and to the island of

Principe (West Africa) and sent several of Britain s

most celebrated astronomers (Eddington, Cottingham,

Crommelin, Davidson), in order to obtain photographs
of the solar eclipse of 2Qth May, 1919. The relative

discrepancies to be expected between the stellar photo

graphs obtained during the eclipse and the comparison

photographs amounted to a few hundredths of a milli

metre only. Thus great accuracy was necessary in

making the adjustments required for the taking of the

photographs, and in their subsequent measurement.

The results of the measurements confirmed the theory
in a thoroughly satisfactory manner. The rectangular

components of the observed and of the calculated
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deviations of the stars (in seconds of arc) are set forth

in the following table of results :

Number of the
First Co-ordinate.
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or with sufficient accuracy by

This expression may also be stated in the following
form :

I 0)V2

If we represent the difference of potential of the centri

fugal force between the position of the clock and the

centre of the disc by &amp;lt;,
i.e. the work, considered nega

tively, which must be performed on the unit of mass

against the centrifugal force in order to transport it

from the position of the clock on the rotating disc to

the centre of the disc, then we have

From this it follows that

.
In the first place, we see from this expression that two

clocks of identical construction will go at different rates

when situated at different distances from the centre of
*

the disc. This result is also valid from the standpoint
of an observer who is rotating with the disc.

Now, as judged from the disc, the latter is in a gravi

tational field of potential &amp;lt;,
hence the result we have

obtained will hold quite generally for gravitational

fields. Furthermore, we can regard an atom which is

emitting spectral lines as a clock, so that the following

statement will hold :

An atom absorbs or emits light of a frequency which is
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dependent on the potential of the gravitational field in
which it is situated.

-y The frequency ot an atom situated on the surface of a

heavenly body will be somewhat less than the frequency
of an atom of the same element which is situated in free

space (or on the surface of a smaller celestial body).M
Now &amp;lt;= -K-, where K is Newton s constant of

gravitation, and M is the mass of the heavenly body.
Thus a displacement towards the red ought to take place
for spectral lines produced at the surface of stars as

compared with the spectral lines of the same element

produced at the surface of the earth, the amount of this

displacement being

For the sun, the displacement towards the red pre
dicted by theory amounts to about two millionths of

the wave-length. A trustworthy calculation is not

possible in the case of the stars, because in general

neither the mass M nor the radius r is known.

It is an open question whether or not this effect

exists, and at the present time astronomers are working
with great zeal towards the solution. Owing to the

smallness of the effect in the case of the sun, it is diffi

cult to form an opinion as to its existence. Whereas

Grebe and Bachem (Bonn), as a result of their own
measurements and those of Evershed and Schwarzschild

on the cyanogen bands, have placed the existence of

the effect almost beyond doubt, other investigators,

particularly St. John, have been led to the opposite

opinion in consequence of their measurements.
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Mean displacements of lines towards the less re

frangible end of the spectrum are certainly revealed by
statistical investigations of the fixed stars ; but up
to the present the examination of the available data

does not allow of any definite decision being arrived at,

as to whether or not these displacements are to be

referred in reality to the effect of gravitation. The

results of observation have been collected together,

and discussed in detail from the standpoint of the

question which has been engaging our attention here,

in a paper by E. Freundlich entitled
&quot;

Zur Priifung der

aligemeinen Relativitats-Theorie
&quot;

(Die Naturwissen-

schaften, 1919, No. 35, p. 520 : Julius Springer, Berlin).

At all events, a definite decision will be reached during
the next few years. If the displacement of spectral

lines towards the red by the gravitational potential
does not exist, then the general theory of relativity

will be untenable. On the other hand, if the cause of

the displacement of spectral lines be definitely traced

to the gravitational potential, then the study of this

displacement will furnish us with important informa

tion as to the mass of the heavenly bodies.
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Papyri. Second Series, XVIIITH to XIXTH

Dynasty. Illustrated. Second Edition.

Cr. too. y. net.

Pollard (A. P.). A SHORT HISTORY
OF THE GREAT WAR. With 19 Maps.
Second Edition. Cr. Boo. i&amp;lt;w. 6d. net.

Price (L. L.). A SHORT HISTORY OF
POLITICAL ECONOMY IN ENGLAND
FROM ADAM SMITH TO ARNOLD
TOYNBEE. Ninth Edition. Cr. too.

$s. net.

Reid (G. Archdall). THE LAWS OF
HEREDITY. Second Edition. Demy too.

i is. net.

Robertson (C. Grant). SELECT STAT
UTES, CASES, AND DOCUMENTS,
1660-1832. Third Edition. Demy too.

i$s. net.

eluua (Edmund). TOMMY SMITH S
ANIMALS. Illustrated. Eighteenth Edi
tion, t-cap. too. y. 6d. net.

TOMMY SMITH S OTHER ANIMALS.
Illustrated. Eleventh Edition. Fcap. too.
v. 6d. net.

TOMMY SMITH AT THE ZOO. Illus
trated. Fourth Edition. Fcap. too.

TOMMY SMITH AGAIN AT THE ZOO.
Illustrated. Second Edition. Fcap. too.
2s. gd.

JACK S INSECTS. Illustrated. Cr.Soo. 6t.

net.

JACK S INSECTS. Popular Edition. Vol.
/. Cr. too. $s. 6d.

Shelley (Percy Bysshe). POEMS. With
an Introduction by A. GLUTTON-BROCK and
Notes by C. D. LOCOCK. Two Volumes.

Demy too. i is. net.

Smith (Adam). THE WEALTH OF
NATIONS. Edited by EDWIN CANNAN.
Two Volumes. Second Edition. Demy
8i&amp;gt;. i ss. net.

Stevenioa (R. L.). THE LETTERS OF
ROBERT LOUIS STEVENSON. Edited

by Sir SIDNEY COLVIN. A New Re
arranged Edition infour volumes. Fourth
Edition. Fcap. too. Each 6j. net.

Surtees (R. S.). HANDLEY CROSS.
Illustrated. Ninth Edition. Fcap. too.

js. 6d. net.

MR. SPONGE S SPORTING TOUR.
Illustrated. Fifth Edition. Fcap. too.

ASK MAMMA: OR, THE RICHEST
COMMONER IN ENGLAND. Illus

trated. Second Edition. Fcap. too. js.6d.
net.

JORROCKS S JAUNTS AND JOLLI
TIES. Illustrated. Seventh Edition.

Fcap. too. 6f. net.

MR. FACEY ROMFORD S HOUNDS.
Illustrated. Third Edition. Fcap. too.

7s. 6d. net.

HAWBUCK GRANGE ; OR, THE SPORT
ING ADVENTURES OF THOMA3
SCOTT, ESQ. Illustrated. Fcap. too.

PLAIN OR RINGLETS? Illustrated.

Fcap. too. js. 6d. net.

HILLINGDON HALL. With 12 Coloured

Plates by WILDRAKE, HEATH, and JEU.I-

COE. Fcap. Svo. 7*. 6d, *tt.
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Edition. Medium i6mo. 3j. 6d. net.
Underbill (Evelyn). MYSTICISM. A
btudy in the Nature and Development ofMans Spiritual Consciousness. EighthEdition. Demy Svo. i 5j. net.

Yardon (Harry). HOW TO PLAY GOLF
s^nJt

Thirteenth Edit&quot;*- Cr. 8vo.

Waterhouse (Elizabeth). A LITTI FBOOK OF
V

LIFE AND DE

Maps. Cr. 8vo. 6s.

o
A SHORT HISTORY OF

Seventeenth Edition. With a

wTr E WORKS OF OSCARWILDE. Fcap. too. Each 6s. 6rf. rf.
t. LORD ARTHUR SAVILE S CRIME ANDTHE PORTRAIT OF MR. W. H. n THEDUCHESS OF PAOUA. ,. POEMS. ,vLADY WINDERMKRE S FAN. v. A WOMANo? No IMPORTANCE, vi. AN IDEAL HUS

BAND, vii. THE IMPORTANCE OF BEING
EARNEST, vm. A HOUSE OF POME
GRANATES, ix. INTENTIONS, x. DE PRO-
FUNDIS AND PRISON LETTERS. XI. ESSAYS.
xii. SALOME, A FLORENTINE TRAGEDY,
and LA SAINTE COURTISANE. xm. A
CRITIC IN PALL MALL. xiv. SELECTED
PROSE OF OSCAR WILDE, xv. ART AND
DECORATION.

A HOUSE OF POMEGRANATES. Illus
trated. Cr. tfo. 2u. net.

Wood (Lieut. W. B.) and Edmonds (CoL
J. E.). A HISTORY OF THE CIVILWAR IN THE UNITED STATES
(1861-65). With an Introduction by SPENSER
WILKINSON. With 24 Maps and Plans.
Third Edition. Demy 8vo. i$s. net.

Wordsworth (W.). POEMS. With an
Introduction and Notes by NOWELL C
SMITH. Three Volumes. Demy Bva i&r
ftet.

v
W- * A BOOK OF IRISH

VERSE. Fourth Edition. Cr. 8vo
is. ntt.

PART II. A SELECTION OF SERIES

Ancient Cities

General Editor, SIR B. C. A. WINDLE
Cr. 8vo. 6s. net each volume

With Illustrations by E. H. NEW, and other Artists

BRISTOL. CANTERBURY. CHESTER. DUB- I EDINBURGH. LINCOLN. SHREWSBURY.
I WELLS and GLASTONBURY.

The Antiquary s Books
General Editor, J. CHARLES COX
Demy %vo. IQJ. 6d. net each volume

With Numerous Illustrations
ANCIENT PAINTED GLASS IN ENGLAND
ARCHEOLOGY AND FALSE ANTIQUITIESTHE BELLS OK ENGLAND. THE BRASSES
OF ENGLAND. THE CASTLES AND WALLED
TOWNS OF ENGLAND. CELTIC ART IN
PAGAN AND CHRISTIAN TIMES. CHURCH
WARDENS ACCOUNTS. THE DOMESDAY
INQUEST. ENGLISH CHURCH FURNITURE.
ENGLISH COSTUME. ENGLISH MONASTIC
LIFE. ENGLISH SEALS. FOLK-LORE ASAN HISTORICAL SCIENCE. THE GILDS AND
COMPANIES OF LONDON. THE HERMITS
AND ANCHORITES OF ENGLAND. THE

MANOR AND MANORIAL RECORDS. THE
MEDIEVAL HOSPITALS OF ENGLAND.
OLD ENGLISH INSTRUMENTS OF Music.
OLD ENGLISH LIBRARIES. OLD SERVICE
BOOKS OF THE ENGLISH CHURCH. PARISH
LIFE IN MEDIEVAL ENGLAND. THE
PARISH REGISTERS OF ENGLAND. RE
MAINS OF THE PREHISTORIC AGE IN ENG
LAND. THE ROMAN ERA IN BRITAIN
ROMANO-BRITISH BUILDINGS AND EARTH
WORKS. THE ROYAL FORESTS OF ENG
LAND. THE SCHOOLS or MEDIEVAL ENG
LAND. SHRINES OF BRITISH SAINTS.
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The Arden Shakespeare
General Editor, R. H. CASE
Demy 8vo. 6s. net each volume

An edition of Shakespeare in Single Plays ; each edited with a full Introduction,
Textual Notes, and a Commentary at the foot of the page.

Classics of Art

Edited by DR. J. H. \V. LAING
With numerous Illustrations. Wide Royal 8vo

THE ART OF THE GREEKS, 15^. net. THE
ART OF THE ROMANS, IDS. net. CHARDIN,
155-. net. DONATELLO, ids. net. GEOKGE
ROMNRY, i?s. net. GHIRLANDAIO, 15.5. net.

LAWKENCE, 25*. net. MICHELANGELO, 15$.

net. RAPHAEL, 15.1. net. REMBRANDT S

ETCHINGS, Two Vols., 25.5. net. TINTOR
ETTO, \ds. net. TITIAN, ids. net. TURNER S

SKETCHES AND DRAWINGS, 15*. net.

VELAZQUEZ, 155. net.

The Complete Series

Fully Illustrated. Demy 8vo

THE COMPLETE AMATEUR BOXER, IO.T. dd.

net. THE COMPLETE ASSOCIATION FOOT
BALLER, io$. dd. net. THE COMPLETE
ATHLETIC TRAINER, IDS. dd. net. THE
COMPLETE BILLIARD PLAYER, 125. dd.

net. THE COMPLETE COOK, ros. dd. net.

THE COMPLETE CRICKETER, JOT. dd. net.

THE COMPLETE FOXHUNTER, ids. net.

THE COMPLETE GOLFER, izs. dd. net.

THE COMPLETE HOCKEY-PLAYER, los. dd.

net. THE COMPLETE HORSEMAN, 125. dd.

net. THE COMPLETE JUJITSUAN, gj. net.

THE COMPLETE LAWN TENNIS PLAYER,
i2s. dd. net. THE COMPLETE MOTORIST,
ioj. dd. net. THE COMPLETE MOUNTAIN
EER, i6r. net. THE COMPLETE OARSMAN,
i$s. net. THE COMPLETE PHOTOGRAPHER,
iSJ. net. THE COMPLETE RUGBY FOOT
BALLER, ON THE NEW ZEALAND SYSTEM,
i2S. 6d. net. THE COMPLETE SHOT, ids.

net. THE COMPLETE SWIMMER, IQJ. dd.

net. THE COMPLETE YACHTSMAN, i6s. net.

The Connoisseur s Library
With numerous Illustrations. Wide Royal 8vo. 255. net each volume

ENGLISH COLOURED BOOKS. ENGLISH FUR
NITURE. ETCHINGS. EUROPEAN ENAMELS.
FINE BOOKS. GLASS. GOLDSMITHS AND
SILVERSMITHS WORK. ILLUMINATED

MANUSCRIPTS. IVORIES. JEWELLERY.
MEZZOTINTS. MINIATURES. PORCELAIN.
SEALS. WOOD SCULPTURE.

Handbooks of Theology

Demy 8vo

THB DOCTRINE OF THE INCARNATION, 15.5.

net. A HISTORY OK EARLY CHRISTIAN

DOCTRINE, idr. net. INTRODUCTION TO
THE HISTORY OF RELIGION, izs. dd. net.

AN INTRODUCTION TO THE HISTORY OF

THE CREEDS, I2J. dd. net. THE PHILOSOPHY
OF RELIGION IN ENGLAND AND AMERICA,
ixs. dd. net. THE XXXIX ARTICLES OF
THE CHURCH OF ENGLAND, i$s. net.

Health Series

Fcap. 8va. zs. 6d. net

THE BABY. THE CARB OF THE BODY. THE
CARE OF THE TEETH. THE EYES OF OUR

CHILDREN. HEALTH FOR THE MIDDLE-

AGED. THE HEALTH OF A WOMAN. THE
HEALTH OF THE SKIN. How TO LIVE

LONG. THE PREVENTION OF THE COMMON
COLD. STAYING THE PL/VGUE. THROAT
AND EAR TROUBLES. TUBERCULOSIS. THE
HEALTH OF THE CHILD, as. ntt.
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Leaders of Religion
Edited by H. C. BEECHING. With Portraits

Crown Svo. $s. net each volume

The Library of Devotion
Handy Editions of the great Devotional Books, well edited.

With Introductions and (where necessary) Notes
Small Pott 8vo, cloth, 3*. net and y. 6d. net

Little Books on Art
With many Illustrations. Demy i6mo. jx net each volume

Each volume consists of about 200 pages, and contains from 30 to 40 Illustrations,

including a Frontispiece in Photogravure
ALBRKCHT DURER. THE ARTS OF JAPAN.
BOOKPLATES. BOTTICELLI. BURNE-JONES.
CELLINI. CHRISTIAN SYMBOLISM. CHRIST
IN ART. CLAUDE. CONSTABLE. COROT.
EARLY ENGLISH WATER-COLOUR. ENA
MELS. FREDERIC LEIGHTON. GEORGE
ROMNBY. GREEK ART. GREUZE AND

BOUCHER. HOLBEIN. ILLUMINATED
MANUSCRIPTS. JEWELLERY. JOHN HOPP-
NER. Sir JOSHUA REYNOLDS. MILLET
MINIATURES. OURL.ADY IN ART. RAPHAEL!
RODIN. TURNER. VANDVCK. VELAZQUEZ
WATTS.

The Little Guides
With many Illustrations by E. H. NEW and other artists, and from photographs

Small Pott 8vo. 4*. net and 6s. net

Guides to the English and Welsh Counties, and some well-known districts T
The main features ol these Guides are (i) a handy and charming form (2)

illustrations from photographs and by well-known artists; (3) good plans and
maps ; (4) an adequate but compact presentation of everything that is interestingm the natural features, history, archeology, and architecture of the town or
district treated.

The Little Quarto Shakespeare
Edited by W. J. CRAIG. With Introductions and Notes

Pott i6mo. 40 Volumes. Leather, price is.
&amp;lt;)d.

net each volume

Cloth, is. 6d.

Nine Plays
Fcap. Svo. 3^. 6d. net

Edward Knoblock.
ACROSS THE BORDER. Beulah Marie Dix.

HONEYMOON, THE. A Comedy in Three Acts.
Arnold Bennett. Third Edition.

GREAT ADVENTURE, THE. A Play of Fancy in
Four Acts. Arnold Bennett. Fifth Edition.

MILESTONES. Arnold Bennett and Edward
Knoblock. Ninth Edition.

IDEAL HUSBAND, AN.
Edition.

Oscar Wilde. Acting

KISMET.
tion.

Fourth Edi-

TYPHOON. A Play &amp;gt;n Four Acts. Melchior
Lengyel. English Version by Laurence
Irving. Second Edition.

WARH CASK, THE. George Pleydell.

GBNERAL POST. J. E. Harold Terry. Second
Edition.
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Sports Series
Illustrated. Fcap. Xvo . 2s . ne( andALL ABODT FLYING, y. net. GOLF Do sANDDONT S. THE GOLFING SWING. HowTO SWIM. LAWN TENNIS, y. net. SKAT-

The Westminster Commentaries
General Editor, WALTER LOCK

De?ny 8vo
THE ACTS OF THE APOSTLES, ifij net
AMOS, 8*. &/. net. I. CORINTHIANS, si!

f/. EXODUS, I5s. net. EZEKIEL,
ins. 6J. net. GENESIS, i6j. ,/. HEBREWS
8*. 6rf. */. ISAIAH, i6s. net. TEKEMIAH

Methuen s
Two-Shilling Library

Cheap Editions of many Popular Books
. Svo

PART III. A SELECTION OF WORKS OF FICTION
Bennett (Arnold)

CLAYHANGER, 8s. net. HlLDA LBSSWAYS
6s. M. net. THESE TWAIN. THE CARD.THE REGENT: A Five Towns Story of
Adventure in London. THE PRICE OF
LOVE. BURIED ALIVE. A MAN FROM THENORTH. THE MATADOR OF THE FIVE
TOWNS. WHOM GOD HATH JOINED. AGRBAT MAN : A Frolic. All 7s. 6d. net.

Birmingham (George A.)
SPANISH GOLD. THE SEARCH PARTY.LALAGE s LOVERS. THE BAD TIMES. UPTHE REBELS. A II 7s. 6d. net.

In^ronghs (Edgar Rtce)-
TARZAN OF THE APES, 6s. net. THERETURN OF TARZAN, 6s. net. THE BEASTSOF TARZAN, 6s. net. THE SON OF TARZAN
6s net. JUNGLE TALES OF TARZAN, 6s
net. TARZAN AND THE JEWELS OF OPAR
tr. net. TARZAN THE UNTAMED, 7s. 6d. net

SNCESS OF MARS
&amp;gt;

6s - net. THE GODSOF MARS, 6s. net. THE WARLORD OF
MARS, 6s. net.

onrad (Joseph). A SET OF SIX. Fourth
Edition. Cr. 8vo. 7s. 6d. net.

AN ISLAND TALE. Sixth
. 8vo. gj. net.

Corelll (Marle)-
A ROMANCE OF Two WORLDS, 7s 6d netSKT -^ T

T
H
h
ELM^y/N^ F̂

PrinceU, &. 6& ,/ A DATH T^^^
s

CHRIST.AVCHRISTIAN,
7 &quot;

IHE MASTER-
LEMPORAL POWER:

&quot;7&quot;^
AN : A ^imPle Love Story, 8s. 6ctnet. HOLY ORDERS: The Tragedy of a

Quiet Life 8, &/. net. THE MIGHTV ATOM!
7s. bd. net. BOY : A Sketch, 7s. 6J tAe& *&quot; THE LlFE *-*m

Doyle (Sir A. Conan). ROUND THE RFnLAMP. Twelfth Edition Cr 8 7f d?
net.

Hichens (Robert)
TONGUES OF CONSCIENCE, 7t. M net
FELIX : Three Years in a Life, 7s. 6d netTHE WOMAN WITH THE FAN, 7s. 6d netBYEWAYS 7s. 6d. net. THE GARDEN OF
ALLAH, 8s 6d. net. THE CALL OF THEBLOOD 8s. 6d. net. BARBARY SHEEP, 6s
net. THE DWELLERS ON THE THRESHOLD
is. 6d net. THE WAY OF AMBITION, 7s.bd. net. IN THE WILDERNESS, 7s. 6d net
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Hope (Anthony)
A CHANGE OF AIR. A MAN OF MARK.
THE CHRONICLES OF COUNT ANTONIO.
SIMON DALE. THE KING S MIRROR.

QUISANTE. THE DOLLY DIALOGUES.
TALES OF Two PEOPLE. A SERVANT OF
THE PUBLIC. MRS. MAXON PROTESTS.
A YOUNG MAN S YEAR. BEAUMASOY
HOME FROM THE WARS. A II js. 6d. net.

Jacobs (W. W.)
MANY CARGOES, 51. net and zs. 6d. net.

SEA URCHINS, $s. net and 33. 6d. net.

A MASTER OF CRAFT, 5*. net. LIGHT
FREIGHTS, 5^. net. THE SKIPPER S WOO
ING, $s. net. AT SUNWICH PORT, 5*. net.

DIA.LSTONE LANE, $s. net. ODD CRAFT,
v. net. THE LADY OK THE BARGE, $s. net.

SALTHAVEN, $s. net. SAILORS KNOTS, $s.

net. SHORT CRUISES, 5*. net.

London (Jack). WHITE FANG. Ninth
Edition. Cr. Svo. 7*. 6d. net.

McKenna (Stephen)
SONIA : Between Two Worlds, 8s. net.

NINETY-SIX HOURS LEAVE, 7$. 6d. net.

THE SIXTH SENSE, 6s. net. MIDAS & SON,
8s. net.

Halet (Lucas)
THE HISTORY OF SIR RICHARD CALMADY :

A Romance. THE WAGES OF SIN. THE
CARISSIMA. THE GATELESS BARRIER.
DEADHAM HARD. AUjs.dd. net.

Mason (A. B. W.). CLEMENTINA.
Illustrated. Ninth Edition. Cr. 800. js.

6d. nst.

Maxwell (W. B.)

VIVIEN. THE GUARDED FLAME. ODD
LENGTHS. HILL RISE. THE REST CURE.
All 7S. 6d. net.

Oxenham (John)
A WEAVER OF WEBS. PROFIT AND Loss.
THE SONG OF HYACINTH, and Other
Stories. LAURISTONS. THE COIL OK CARNE.
THE QUEST OF THE GOLDEN ROSE. MARY
ALL-ALONE. BROKEN SHACKLES. &quot;1914.&quot;

All js. 6d. net.

Parker (Gilbert)
PIERRE AND HIS PEOPLE. MRS. FALCHION.
THE TRANSLATION OF A SAVAGE. WHEN
VALMOND CAME TO PONTIAC : The Story of
a Lost Napoleon. AN ADVENTURER OF THE
NORTH : The Last Adventures of Pretty
Pierre. THE SEATS OF THE MIGHTY. THE
BATTLE OF THE STRONG : A Romance
of Two Kingdoms. THE POMP OF THE
LAVILETTES. NORTHERN LIGHTS. All
^s. (&amp;gt;d. net.

Phillpotts (Eden)
CHILDREN OF THE MIST. SONS OF THE
MORNING. T RIVER. THE AMERICAN
PRISONER. L EK S DAUGHTER. THE
HUMAN BOY p HE WAR. A II ^s. 6d. net.

Ridge (W. Pett)-
A SON OF THE STATE, -s. 6d. net. THE
REMINGTON SENTENCE, 7*. 6d. net.
MADAME PRINCE, 7*. 6d. net. TOP SPEED,
Js. 6d. net. SPECIAL PERFORMANCES, 6s.

net. THE BUSTLING HOURS, 7$. 6d. net.

Bohmer (Sax)
THE DEVIL DOCTOR. THE SI-FAN.
MYSTERIES. TALES OF SECRET EGYPT.
THE ORCHARD OF TEARS. THE GOLDEN
SCORPION. All7S.6d.net.

Swinnerton (F.). SHOPS AND HOUSES.
Third Edition. Cr. %vo. 7s. 6d. net.

SEPTEMBER. Third Edition. Cr. too.

7s. fid. net.

Wells (H. G.X BEALBY. Fourth Edition.
Cr. Svo. js. 6.t. net.

Williamson (0. N. and A. M.)
THE LIGHTNING CONDUCTOR : The Strange
Adventures of a Motor Car. LADY BETTY
ACROSS THE WATER. SCARLET RuNNEH.
LORD LOVELAND DISCOVERS AMERICA..
THE GUESTS OF HERCULES. IT HAPPENS!
IN EGYPT. A SOLDIER OF THE LEGION
THE SHOP GIRL. THE LIGHTNING CON
DUCTRESS. SECRET HISTORY. THE Lovj
PIRATE. All js. 6d. net. CRUCIFI:
CORNER, dr. net.

Methuen s Two-Shilling Novels

Cheap Editions of many of the most Popular Novels of the day

Write for Complete List

Fcap. &vo

(&amp;gt;
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